...
首页> 外文期刊>Environmental Science & Technology >Degradation and Mineralization of Carbamazepine Using an Electro-Fenton Reaction Catalyzed by Magnetite Nanoparticles Fixed on an Electrocatalytic Carbon Fiber Textile Cathode
【24h】

Degradation and Mineralization of Carbamazepine Using an Electro-Fenton Reaction Catalyzed by Magnetite Nanoparticles Fixed on an Electrocatalytic Carbon Fiber Textile Cathode

机译:固定在电催化碳纤维纺织阴极上的磁铁矿纳米粒子催化的Fenton反应催化卡马西平的降解和矿化作用

获取原文
获取原文并翻译 | 示例
           

摘要

Pharmaceutical wastes are considered to be important pollutants even at low concentrations. In this regard, carbamazepine has received significant attention due to its negative effect on both ecosystem and human health. However, the need for acidic conditions severely hinders the use of conventional Fenton reagent reactions for the control and elimination of carbamazepine in wastewater effluents and drinking water influents. Herein, we report of the synthesis and use of flexible bifunctional nanoelectrocatalytic textile materials, Fe3O4-NP@CNF, for the effective degradation and complete mineralization of carbamazepine in water. The nonwoven porous structure of the composite binder-free Fe3O4-NP@CNF textile is used to generate H2O2 on the carbon nanofiber (CNF) substrate by O-2 reduction. In addition, center dot OH radical is generated on the surface of the bonded Fe3O4 nanoparticles (NPs) at low applied potentials (-0.345 V). The Fe3O4-NPs are covalently bonded to the CNF textile support with a high degree of dispersion throughout the fiber matrix. The dispersion of the nanosized catalysts results in a higher catalytic reactivity than existing electro-Fenton systems. For example, the newly synthesized Fe3O4-NPs system uses an Fe loading that is 2 orders of magnitude less than existing electro-Fenton systems, coupled with a current efficiency that is higher than electrolysis using a boron-doped diamond electrode. Our test results show that this process can remove carbamazepine with high pseudo-first-order rate constants (e.g., 6.85 h(-1) ) and minimal energy consumption (0.239 kW.h/g carbamazepine). This combination leads to an efficient and sustainable electro-Fenton process.
机译:医药废物即使在低浓度下也被认为是重要的污染物。在这方面,卡马西平由于其对生态系统和人类健康的负面影响而受到了广泛关注。然而,对酸性条件的需求严重阻碍了常规的芬顿试剂反应用于控制和消除废水和饮用水中的卡马西平的用途。在此,我们报告了柔性双功能纳米电催化纺织材料Fe3O4-NP @ CNF的合成和使用,以有效降解卡马西平并使其在水中完全矿化。复合无粘结剂Fe3O4-NP @ CNF织物的无纺多孔结构用于通过O-2还原在碳纳米纤维(CNF)基底上生成H2O2。另外,在低施加电势(-0.345 V)下,键合的Fe3O4纳米颗粒(NPs)的表面上会生成中心点OH自由基。 Fe3O4-NPs共价键合到CNF纺织品支撑物上,并在整个纤维基质中具有高度分散性。纳米尺寸催化剂的分散导致比现有的电子芬顿体系更高的催化反应性。例如,新合成的Fe3O4-NPs系统使用的Fe负载量比现有的电子Fenton系统少2个数量级,并且电流效率高于使用掺硼金刚石电极的电解效率。我们的测试结果表明,该过程可以去除具有高拟一阶速率常数(例如6.85 h(-1))和最低能耗(0.239 kW.h / g卡马西平)的卡马西平。这种结合导致了高效且可持续的电子芬顿工艺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号