...
首页> 外文期刊>Environmental Science & Technology >Degradation of Polyamide Membranes Exposed to Chlorine: An Impedance Spectroscopy Study
【24h】

Degradation of Polyamide Membranes Exposed to Chlorine: An Impedance Spectroscopy Study

机译:暴露于氯的聚酰胺膜的降解:阻抗谱研究

获取原文
获取原文并翻译 | 示例
           

摘要

Polyamide is the key material in modern membrane desalination; however, its well-known and incompletely understood drawback is its low tolerance to chlorine, the most efficient in-line disinfectant. Here we report a first investigation of the mechanism and kinetics of chlorine attack using electrochemical impedance spectroscopy (EIS) that directly probes changes in ion permeation upon chlorination at different pH values, focusing on its early stages and low chlorine concentrations (15-197 ppm). EIS results partly conform to an established two-stage mechanism that proceeds as N-chlorination followed by either Cchlorination in acidic conditions or amide bond scission in alkaline conditions. However, early time kinetics in acidic conditions shows inconsistencies with this model, explained by possible effects of direct ring chlorination and finite polymer relaxation rates. The findings indicate that (a) N-chlorination reduces membrane polarity and ion permeability, while C chlorination has an opposite effect; (b) chlorination in acidic conditions must involve other reactions, such as direct ring chlorination, in addition to N-chlorination and Orton rearrangement; and (c) the ultimate chemical transformations (C chlorination or amide bond scission) result in an irreversible increase in membrane polarity and loss of ion rejection. The results highlight the potential of EIS as a powerful and sensitive tool for studying chemical degradation of ion-selective materials that may assist in developing new chlorine-resistant membranes.
机译:聚酰胺是现代膜脱盐的关键材料。但是,其众所周知的,尚未完全理解的缺点是对氯(最有效的在线消毒剂)的耐受性低。在这里,我们报告了使用电化学阻抗谱(EIS)对氯攻击的机理和动力学的首次研究,该电化学阻抗谱直接探测了在不同pH值下氯化时离子渗透的变化,重点是其早期阶段和低氯浓度(15-197 ppm) 。 EIS结果部分符合既定的两阶段机理,该机理为先进行N-氯化,然后在酸性条件下进行氯化或在碱性条件下进行酰胺键断裂。然而,在酸性条件下的早期动力学显示出与该模型的矛盾,这可以通过直接环氯化和有限的聚合物弛豫速率的可能影响来解释。研究结果表明:(a)N氯化降低了膜的极性和离子渗透性,而C氯化则相反。 (b)酸性条件下的氯化除N-氯化和Orton重排外,还必须涉及其他反应,例如直接环式氯化; (c)最终的化学转化(C氯化或酰胺键断裂)导致膜极性不可逆转的增加和离子排斥的损失。结果突出了EIS作为研究离子选择材料的化学降解的强大和敏感工具的潜力,该离子降解材料可能有助于开发新的耐氯膜。

著录项

  • 来源
    《Environmental Science & Technology》 |2019年第5期|2618-2625|共8页
  • 作者单位

    Technion IIT, Wolfson Dept Chem Engn, IL-32000 Haifa, Israel;

    Technion IIT, Wolfson Dept Chem Engn, IL-32000 Haifa, Israel|Technion IIT, Grand Water Res Inst, IL-32000 Haifa, Israel|Technion IIT, Grand Technion Energy Program, IL-32000 Haifa, Israel;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号