...
首页> 外文期刊>Environmental Science & Technology >Quantitative Linking of Nanoscale Interactions to Continuum-Scale Nanoparticle and Microplastic Transport in Environmental Granular Media
【24h】

Quantitative Linking of Nanoscale Interactions to Continuum-Scale Nanoparticle and Microplastic Transport in Environmental Granular Media

机译:纳米级相互作用对环保介质连续纳米粒子和微塑性输送的定量连接

获取原文
获取原文并翻译 | 示例
           

摘要

Quantitative linkage of fundamental physicochemical characteristics to rate coefficients used in simulations of experimentally observed transport behaviors of nanoparticles and microplastics (colloids) in environmental granular media is an active area of research. Quantitative linkage is herein demonstrated for (ⅰ) colloids ranging from nano- to microscale; in two field-based granular media of contrasting grain size, (ⅱ) natural fine sand at the column scale; and (ⅱ) streambed-equilibrated commercial pea gravel at the field scale. Continuum-scale rate coefficients were linked to nanoscale interactions via mechanistic pore-scale colloid trajectory simulations that predicted and defined fast- and slow-attaching subpopulations, as well as nonattaching subpopulations that either remained in the near-surface pore water or re-entrained to bulk pore water. These subtractions of the classic collector efficiency were upscaled to continuum-scale rate coefficients that produced experimentally observed colloid breakthrough-elution concentration histories and nonexponential colloid distributions from the source. The simulations explained transition from hyperexponential to nonmonotonic colloid distributions from the source as driven accumulation of mobile near-surface colloids due to relatively strong secondary minimum interaction and weak diffusion for microscale colloids. The assumption of depletion of the fast-attaching colloid subpopulation by attachment to grain surfaces produced the experimentally observed contrasting distances across which nonexponential colloid distribution from the source occurred in the fine sand versus pea gravel. Rate coefficients were quantitatively calculated from physicochemical parameters and the following three fit parameters: (ⅰ) fractional coverage by nanoscale heterogeneity; (ⅱ) efficiency of return to the near-surface domain; and (ⅲ) in explicit simulations, characteristic velocity for scaling transfer to near-surface pore water.
机译:在环境粒状介质中实验观察到的纳米颗粒和微塑料(胶体)模拟模拟中使用的基本物理化学特征的定量连杆是一种活跃的研究领域。本发明的定量连杆证明(Ⅰ)胶体范围从纳米至微尺寸的范围;在对比度晶粒尺寸的两个基于粒状粒状介质中,(Ⅱ)柱尺度的天然细砂; (Ⅱ)野外规模的流平衡的商用豌豆砾石。通过预测和定义快速和慢速附着的群体的机械孔隙胶体轨迹模拟,连续尺度率系数与纳米级相互作用相关联,以及留在近表面孔隙水或重新夹带到散装孔隙水。经典收集器效率的这些减法升高到连续率系数系数,该系数系数产生实验观察到的胶体突破洗脱浓度历史和非源极胶体分布。由于相对强的二次最小相互作用和微尺寸胶体的弱扩散,仿真从源从源从源作为移动近表面胶体的驱动累积的过度胶体分布的转变。通过附着到晶粒表面的快速附着胶体亚群的假设产生了通过在细砂与豌豆砾石中产生的实验观察到的对比距离,从源中发生非表现胶体分布。从物理化学参数和以下三个适合参数定量计算速率系数:(Ⅰ)纳米级异质性的分数覆盖率; (Ⅱ)返回近表面域的效率; (Ⅲ)在显式模拟中,缩放转移到近表面孔隙水的特征速度。

著录项

  • 来源
    《Environmental Science & Technology》 |2020年第13期|8032-8042|共11页
  • 作者

    William P. Johnson;

  • 作者单位

    University of Utah Salt Lake City Utah 84112 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号