...
首页> 外文期刊>Environmental Science & Technology >Predominant Effect of Material Surface Hydrophobicity on Gypsum Scale Formation
【24h】

Predominant Effect of Material Surface Hydrophobicity on Gypsum Scale Formation

机译:材料表面疏水性对石膏刻度形成的主要效应

获取原文
获取原文并翻译 | 示例
           

摘要

Scale formation is an important challenge in water and wastewater treatment systems. However, due to the complex nature of membrane surfaces, the effects of specific membrane surface characteristics on scale formation are poorly understood. In this study, the independent effect of surface hydrophobicity on gypsum (CaSO_4•2H_2O) scale formation via surface-induced nucleation and bulk homogeneous nucleation was investigated using quartz crystal microbalance with dissipation (QCM-D) on self-assembled monolayers (SAMs) terminated with -OH, -CH_3, and -CF_3 functional groups. Results show that higher surface hydrophobicity enhances both surface-induced nucleation of gypsum and attachment of gypsum crystals formed from homogeneous nucleation in the bulk solution. The enhanced surface-induced nucleation is attributed to the lower nucleation energy barrier on a hydrophobic surface, while the increased gypsum crystal attachment results from the favorable hydrophobic interactions between gypsum and more hydrophobic surfaces. Contrary to previous findings, the role of Ca~(2+) adsorption in surface-induced nucleation was found to be relatively small and similar on the different SAMs. Therefore, increasing material hydrophilicity is a potential approach to reduce gypsum scaling.
机译:规模形成是水和废水处理系统中的重要挑战。然而,由于膜表面的复杂性质,特异性膜表面特性对规模形成的影响很差。在这项研究中,研究了通过表面诱导的核细胞(SAMS)在终止的自组装单层(SAMS)上的石英晶微观(SAMS)来研究通过表面诱导的成核和本体均匀成核来形成石膏(CasO_4•2H_2O)刻度形成的独立效果使用-oh,-ch_3和-cf_3功能组。结果表明,较高的表面疏水性增强了表面诱导的石膏成核,并在本体溶液中由均匀成核形成的石膏晶体的附着。增强的表面诱导的成核归因于疏水表面上的较低成核能量屏障,而增加的石膏晶体附着在石膏和更多疏水表面之间的良好疏水相互作用产生。与先前的发现相反,发现Ca〜(2+)吸附在表面诱导的成核中的作用是相对较小的,在不同的SAM上相似。因此,增加材料亲水性是减少石膏缩放的潜在方法。

著录项

  • 来源
    《Environmental Science & Technology》 |2020年第23期|15395-15404|共10页
  • 作者单位

    Department of Civil and Environmental Engineering and NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment Rice University Houston 77005 United States;

    Department of Civil and Environmental Engineering Rice University Houston 77005 United States School of Environment Tsinghua University Beijing 100084 China;

    Department of Civil and Environmental Engineering and NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment Rice University Houston 77005 United States;

    Department of Civil and Environmental Engineering and NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment Rice University Houston 77005 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号