...
首页> 外文期刊>Environmental Science & Technology >Thermodynamics of Ion Separation by Electrosorption
【24h】

Thermodynamics of Ion Separation by Electrosorption

机译:电吸附分离离子的热力学

获取原文
获取原文并翻译 | 示例
           

摘要

We present a simple, top-down approach for the calculation of minimum energy consumption of electrosorptive ion separation using variational form of the (Gibbs) free energy. We focus and expand on the case of electrostatic capacitive deionization (CDI). The theoretical framework is independent of details of the double-layer charge distribution and is applicable to any thermodynamically consistent model, such as the Gouy Chapman Stern and modified Donnan models. We demonstrate that, under certain assumptions, the minimum required electric work energy is indeed equivalent to the free energy of separation. Using the theory, we define the thermodynamic efficiency of CDI. We show that the thermodynamic efficiency of current experimental CDI systems is currently very low, around 1% for most existing systems. We applied this knowledge and constructed and operated a CDI cell to show that judicious selection of the materials, geometry, and process parameters can lead to a 9% thermodynamic efficiency and 4.6 kT per removed ion energy cost. This relatively high thermodynamic efficiency is, to our knowledge, by far the highest thermodynamic efficiency ever demonstrated for traditional CDI. We hypothesize that efficiency can be further improved by further reduction of CDI cell series resistances and optimization of operational parameters.
机译:我们提出了一种简单的,自上而下的方法,用于使用(Gibbs)自由能的变体形式来计算电吸附离子分离的最低能耗。我们关注并扩展静电电容去离子(CDI)的情况。该理论框架与双层电荷分布的细节无关,并且适用于任何热力学一致的模型,例如Gouy Chapman Stern和修正的Donnan模型。我们证明,在某些假设下,所需的最小功功确实等于分离的自由能。使用该理论,我们定义了CDI的热力学效率。我们表明,当前实验性CDI系统的热力学效率目前非常低,对于大多数现有系统而言约为1%。我们运用了这些知识,并构建并运行了CDI电池,以表明对材料,几何形状和工艺参数的明智选择可导致9%的热力学效率和4.6 kT(除去的离子能量成本)。据我们所知,相对较高的热力学效率是迄今为止传统CDI所证明的最高热力学效率。我们假设可以通过进一步降低CDI电池串联电阻和优化操作参数来进一步提高效率。

著录项

  • 来源
    《Environmental Science & Technology》 |2018年第17期|10196-10204|共9页
  • 作者单位

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    MIT, Dept Chem Engn, Cambridge, MA 02139 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号