...
首页> 外文期刊>Environmental Science & Technology >Role of Oxygen Functionalities in Graphene Oxide Architectural Laminate Subnanometer Spacing and Water Transport
【24h】

Role of Oxygen Functionalities in Graphene Oxide Architectural Laminate Subnanometer Spacing and Water Transport

机译:氧功能在氧化石墨烯建筑层压板亚纳米间距和水传输中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Active research in nanotechnology contemplates the use of nanomaterials for environmental engineering applications. However, a primary challenge is understanding the effects of nanomaterial properties on industrial device performance and translating unique nanoscale properties to the macroscale. One emerging example consists of graphene oxide (GO) membranes for separation processes. Thus, here we investigate how individual GO properties can impact GO membrane characteristics and water permeability. GO chemistry and morphology were controlled with easy-to-implement photoreduction and sonication techniques and were quantitatively correlated, offering a valuable tool for accelerating characterization. Chemical GO modification allows for fine control of GO oxidation state, allowing control of GO architectural laminate (GOAL) spacing and permeability. Water permeability was measured for eight GOALs characterized by different GOAL chemistry and morphology and indicates that GOAL nanochannel height dictates water transport. The experimental outputs were corroborated with mesoscale water transport simulations of relatively large domains (thousands of square nanometers) and indicate a no-slip Darcy-like behavior inside the GOAL nanochannels. The experimental and simulation evidence presented in this study helps create a clearer picture of water transport in GOAL and can be used to rationally design more effective and efficient GO membranes.
机译:纳米技术方面的积极研究考虑了将纳米材料用于环境工程应用。然而,主要的挑战是了解纳米材料性能对工业设备性能的影响,并将独特的纳米级性能转化为宏观级。一个新兴的例子是用于分离过程的氧化石墨烯(GO)膜。因此,在这里我们研究单个的GO特性如何影响GO膜的特性和透水性。 GO化学和形态学通过易于实现的光还原和超声处理技术进行控制,并进行定量关联,为加速表征提供了有价值的工具。化学改性GO可以精确控制GO的氧化态,从而可以控制GO建筑层压板(GOAL)的间距和渗透性。测量了八个具有不同GOAL化学和形态特征的GOAL的水渗透性,表明GOAL纳米通道的高度决定了水的传输。实验输出得到相对较大域(数千平方纳米)的中尺度水传输模拟的证实,并表明在GOAL纳米通道内部有类似达西的防滑行为。这项研究中提供的实验和模拟证据有助于更清晰地了解GOAL中的水传输情况,并可用于合理设计更有效和高效的GO膜。

著录项

  • 来源
    《Environmental Science & Technology》 |2017年第8期|4280-4288|共9页
  • 作者单位

    John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States;

    Department of Engineering, University of Rome "Roma Tre", 00141 Rome, Italy;

    John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Technische Universitaet Muenchen, Chemistry Department, Lichtenbergstraße 4, D-85748 Garching b. Muenchen, Germany;

    John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Istituto per le Applicazioni del Calcolo, CNR, 00185 Rome, Italy;

    John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号