...
首页> 外文期刊>Environmental Science & Technology >Methanogenic Biocathode Microbial Community Development and the Role of Bacteria
【24h】

Methanogenic Biocathode Microbial Community Development and the Role of Bacteria

机译:产甲烷生物阴极微生物群落的发展和细菌的作用。

获取原文
获取原文并翻译 | 示例
           

摘要

The cathode microbial community of a methanogenic bioelectrochemical system (BES) is key to the efficient conversion of carbon dioxide (CO_2) to methane (CH_4) with application to biogas upgrading. The objective of this study was to compare the performance and microbial community composition of a biocathode inoculated with a mixed methanogenic (MM) culture to a biocathode inoculated with an enriched hydrogenotrophic methanogenic (EHM) culture, developed from the MM culture following pre-enrichment with H_2 and CO_2 as the only externally supplied electron donor and carbon source, respectively. Using an adjacent Ag/AgCl reference electrode, biocathode potential was poised at -0.8 V (versus SHE) using a potentiostat, with the bioanode acting as the counter electrode. When normalized to cathode biofilm biomass, the methane production in the MM-and EHM-biocathode was 0.153 ± 0.010 and 0.586 ± 0.029 mmol CH_4/mg biomass-day, respectively. This study showed that H_2/CO_2 pre-enriched inoculum enhanced biocathode CH_4 production, although the archaeal communities in both biocathodes converged primarily (86-100%) on a phylotype closely related to Methanobrevibacter arboriphilus. The bacterial community of the MM-biocathode was similar to that of the MM inoculum but was enriched in Spirochaetes and other nonexoelectrogenic, fermentative Bacteria. In contrast, the EHM-biocathode bacterial community was enriched in Proteobacteria, exoelectrogens, and putative producers of electron shuttle mediators. Similar biomass levels were detected in the MM- and EHM-biocathodes. Thus, although the archaeal communities were similar in the two biocathodes, the difference in bacterial community composition was likely responsible for the 3.8-fold larger CH_4 production rate observed in the EHM-biocathode. Roles for abundant OTUs identified in the biofilm and inoculum cultures were highlighted on the basis of previous reports.
机译:产甲烷生物电化学系统(BES)的阴极微生物群落是将二氧化碳(CO_2)有效转化为甲烷(CH_4)的关键,并应用于沼气提纯。这项研究的目的是比较接种了混合甲烷化(MM)培养物的生物阴极与接种了富氢营养甲烷化(EHM)培养物的生物阴极的性能和微生物群落组成。 H_2和CO_2分别是唯一的外部提供的电子给体和碳源。使用一个相邻的Ag / AgCl参比电极,使用恒电位仪将生物阴极电位保持在-0.8 V(相对于SHE),并将生物阳极用作对电极。当标准化为阴极生物膜生物量时,MM-和EHM-生物阴极中的甲烷产量分别为0.153±0.010和0.586±0.029 mmol CH_4 / mg生物量-天。这项研究表明,H_2 / CO_2预富集的接种物增强了生物阴极CH_4的产生,尽管两个生物阴极中的古细菌群落主要汇聚(86-100%)的系统型都与嗜甲烷短杆菌属密切相关。 MM-生物阴极的细菌群落与MM接种物的细菌群落相似,但富含Spirochaetes和其他非外源生电的发酵细菌。相比之下,EHM-生物阴极细菌群落中富含细菌,外生电子和推定的电子穿梭介体。在MM和EHM生物阴极中检测到相似的生物量水平。因此,尽管两个生物阴极的古细菌群落相似,但细菌群落组成的差异可能是造成EHM生物阴极中CH_4产生率提高3.8倍的原因。在以前的报告的基础上,强调了在生物膜和接种物培养物中鉴定出的大量OTU的作用。

著录项

  • 来源
    《Environmental Science & Technology》 |2017年第9期|5306-5316|共11页
  • 作者单位

    School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States;

    School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号