...
首页> 外文期刊>Environmental Science & Technology >Phosphate Shifted Oxygen Reduction Pathway on Fe@Fe_2O_3 Core-Shell Nanowires for Enhanced Reactive Oxygen Species Generation and Aerobic 4-Chlorophenol Degradation
【24h】

Phosphate Shifted Oxygen Reduction Pathway on Fe@Fe_2O_3 Core-Shell Nanowires for Enhanced Reactive Oxygen Species Generation and Aerobic 4-Chlorophenol Degradation

机译:Fe @ Fe_2O_3核壳纳米线上的磷酸转移氧还原途径可增强活性氧的产生和好氧的4-氯苯酚降解

获取原文
获取原文并翻译 | 示例
           

摘要

Phosphate ions widely exist in the environment. Previous studies revealed that the adsorption of phosphate ions on nanoscale zerovalent iron would generate a passivating oxide shell to block reactive sites and thus decrease the direct pollutant reduction reactivity of zerovalent iron. Given that molecular oxygen activation process is different from direct pollutant reduction with nanoscale zerovalent iron, it is still unclear how phosphate ions will affect molecular oxygen activation and reactive oxygen species generation with nanoscale zerovalent iron. In this study, we systematically studied the effect of phosphate ions on molecular oxygen activation with Fe@Fe_2O_3 nanowires, a special nanoscale zerovalent iron, taking advantages of rotating ring disk electrochemical analysis. It was interesting to find that the oxygen reduction pathway on Fe@Fe_2O_3 nanowires was gradually shifted from a four-electron reduction pathway to a sequential one-electron reduction one, along with increasing the phosphate ions concentration from 0 to 10 mmol·L~(-1). This oxygen reduction pathway change greatly enhanced the molecular oxygen activation and reactive oxygen species generation performances of href="/cdn-cgi/l/email-protection" class="__cf_email__" data-cfemail="5e183b1e183b">[email protected]_2O_3 nanowires, and thus increased their aerobic 4-chlorophenol degradation rate by 10 times. These findings shed insight into the possible roles of widely existed phosphate ions in molecular oxygen activation and organic pollutants degradation with nanoscale zerovalent iron.
机译:磷酸盐离子广泛存在于环境中。先前的研究表明,磷酸根离子在纳米级零价铁上的吸附将产生钝化的氧化物壳,从而阻止反应位点,从而降低零价铁的直接污染物还原反应性。鉴于分子氧活化过程不同于使用纳米级零价铁直接还原污染物,因此尚不清楚磷酸根离子将如何影响纳米级零价铁的分子氧活化和活性氧种类的产生。在这项研究中,我们利用旋转环盘电化学分析的优势,系统地研究了磷酸根离子对Fe @ Fe_2O_3纳米线(一种特殊的纳米级零价铁)的分子氧活化的影响。有趣的是,Fe @ Fe_2O_3纳米线上的氧还原路径从四电子还原路径逐渐转变为顺序的一电子还原路径,同时磷酸根离子浓度从0增加到10mmol·L〜( -1)。这种减氧途径的改变极大地增强了href="/cdn-cgi/l/email-protection" class="__cf_email__" data-cfemail="5e183b1e183b"> [受电子邮件保护的]的分子氧活化和活性氧种类生成性能] _2O_3纳米线,从而使它们的好氧4-氯苯酚降解率提高了10倍。这些发现使人们深入了解了广泛存在的磷酸根离子在分子氧活化和纳米级零价铁降解有机污染物中的可能作用。

著录项

  • 来源
    《Environmental Science & Technology》 |2017年第14期|8101-8109|共9页
  • 作者

    Mu Yi; Ai Zhihui; Zhang Lizhi;

  • 作者单位

    Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Central China Normal University, Wuhan, China;

    Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Central China Normal University, Wuhan, China;

    Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, Central China Normal University, Wuhan, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号