...
首页> 外文期刊>Environmental Science & Technology >Nanowires of Geobacter sulfurreducens Require Redox Cofactors to Reduce Metals in Pore Spaces Too Small for Cell Passage
【24h】

Nanowires of Geobacter sulfurreducens Require Redox Cofactors to Reduce Metals in Pore Spaces Too Small for Cell Passage

机译:还原性Geobacter的纳米线需要氧化还原辅助因子以减少孔空间中的金属,这些金属对于细胞通道而言太小了

获取原文
获取原文并翻译 | 示例
           

摘要

Members of the Geobacteraceae family are ubiquitous metal reducers that utilize conductive "nanowires" to reduce Mn(IV) and Fe(III) oxides in anaerobic sediments. However, it is not currently known if and to what extent the Mn(IV) and Fe(III) oxides in soil grains and low permeability sediments that are sequestered in pore spaces too small for cell passage can be reduced by long-range extracellular electron transport via Geobacter nanowires, and what mechanisms control this reduction. We developed a microfluidic reactor that physically separates Geobacter sulfurreducens from the Mn(IV) mineral birnessite by a 1.4 μm thick wall containing <200 nm pores. Using optical microscopy and Raman spectroscopy, we show that birnessite can be reduced up to 15 μm away from cell bodies, similar to the reported length of Geobacter nanowires. Reduction across the nanoporous wall required reducing conditions, provided by Escherichia coli, and an exogenous supply of riboflavin. Our results discount electron shuttling by dissolved flavins, and instead support their role as bound redox cofactors in electron transport from nanowires to metal oxides. We also show that upon addition of a soluble electron shuttle (i.e., AQDS), reduction extends beyond the reported nanowire length up to 40 μm into a layer of birnessite.
机译:土杆菌科的成员是普遍存在的金属还原剂,它们利用导电的“纳米线”还原厌氧沉积物中的Mn(IV)和Fe(III)氧化物。但是,目前尚不知道长距离细胞外电子是否可以减少土壤颗粒和低渗透性沉积物中的Mn(IV)和Fe(III)氧化物,这些氧化物被隔离在孔隙空间中而无法通过细胞而被隔离。通过地球细菌纳米线的转运,以及控制这种减少的机理。我们开发了一种微流体反应器,该反应器通过1.4μm厚的壁(<200 nm的孔)从Mn(IV)矿物水钠锰矿中物理分离了地球还原菌。使用光学显微镜和拉曼光谱法,我们显示水钠锰矿可以减少到距细胞体15μm的距离,这与报道的Geobacter纳米线的长度相似。跨越纳米孔壁的还原需要由大肠杆菌提供的还原条件和核黄素的外源供应。我们的研究结果消除了溶解的黄素对电子的穿梭作用,反而支持了它们在从纳米线到金属氧化物的电子传输中作为结合的氧化还原辅助因子的作用。我们还显示,在添加可溶性电子穿梭物(即AQDS)后,还原范围扩展到超过报道的纳米线长度,直至40μm的水钠锰矿层。

著录项

  • 来源
    《Environmental Science & Technology》 |2017年第20期|11660-11668|共9页
  • 作者单位

    Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL, United States,Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, 301 E. Dean Keeton Street, Austin, TX, United States;

    Department of Geology, University of Illinois at Urbana-Champaign, 1301 West Green Street, Urbana, IL, United States;

    Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL, United States;

    Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, 301 E. Dean Keeton Street, Austin, TX, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号