...
首页> 外文期刊>Environmental Science & Technology >Bringing High-Rate, CO_2-Based Microbial Electrosynthesis Closer to Practical Implementation through Improved Electrode Design and Operating Conditions
【24h】

Bringing High-Rate, CO_2-Based Microbial Electrosynthesis Closer to Practical Implementation through Improved Electrode Design and Operating Conditions

机译:通过改进电极设计和操作条件,使高速率,基于CO_2的微生物电合成更接近实际应用

获取原文
获取原文并翻译 | 示例
           

摘要

The enhancement of microbial electrosynthesis (MES) of acetate from CO_2 to performance levels that could potentially support practical implementations of the technology must go through the optimization of key design and operating conditions. We report that higher proton availability drastically increases the acetate production rate, with pH S.2 found to be optimal, which will likely suppress methanogenic activity without inhibitor addition. Applied cathode potential as low as -1.1 V versus SHE still achieved 99% of electron recovery in the form of acetate at a current density of around -200 A m~(-2). These current densities are leading to an exceptional acetate production rate of up to 1330 g m~(-2) day~(-1) at pH 6.7. Using highly open macroporous reticulated vitreous carbon electrodes with macropore sizes of about 0.6 mm in diameter was found to be optimal for achieving a good balance between total surface area available for biofilm formation and effective mass transfer between the bulk liquid and the electrode and biofilm surface. Furthermore, we also successfully demonstrated the use of a synthetic biogas mixture as carbon dioxide source, yielding similarly high MES performance as pure CO_2. This would allow this process to be used effectively for both biogas quality improvement and conversion of the available CO_2 to acetate.
机译:将乙酸的微生物电合成(MES)从CO_2提高到可能支持该技术实际实施的性能水平,必须通过关键设计和操作条件的优化来实现。我们报告说,较高的质子利用率可极大地提高乙酸盐的生产率,pH S.2被认为是最佳的,这很可能会在不添加抑制剂的情况下抑制产甲烷活性。与SHE相比,施加的阴极电位低至-1.1 V,在约-200 A m〜(-2)的电流密度下,仍以乙酸盐的形式实现了99%的电子回收。这些电流密度导致在pH 6.7时高达1330 g m〜(-2)天〜(-1)的醋酸盐异常生产率。发现使用大孔直径约0.6mm的高度开放的大孔网状玻璃状碳电极是最佳的,以实现可用于生物膜形成的总表面积与本体液体与电极和生物膜表面之间的有效质量转移之间的良好平衡。此外,我们还成功地证明了使用合成沼气混合物作为二氧化碳源,产生了与纯CO_2类似的高MES性能。这将使该过程可有效地用于沼气质量改善和将可用的CO_2转化为乙酸盐。

著录项

  • 来源
    《Environmental Science & Technology》 |2016年第4期|1982-1989|共8页
  • 作者单位

    Advanced Water Management Centre, The University of Queensland, Gehrmann Building, Brisbane, QLD 4072, Australia,Centre for Microbial Electrochemical Systems, The University of Queensland, Gehrmann Building, Brisbane, QLD 4072, Australia,Sub-Department of Environmental Technology, Wageningen University, Wageningen, The Netherlands;

    Advanced Water Management Centre, The University of Queensland, Gehrmann Building, Brisbane, QLD 4072, Australia,Centre for Microbial Electrochemical Systems, The University of Queensland, Gehrmann Building, Brisbane, QLD 4072, Australia;

    Advanced Water Management Centre, The University of Queensland, Gehrmann Building, Brisbane, QLD 4072, Australia,Centro de Investigaciones y Transferencia-Jujuy-Conicet, Av. Bolivia 1239, San Salvador de Jujuy, 4600, Argentina;

    Advanced Water Management Centre, The University of Queensland, Gehrmann Building, Brisbane, QLD 4072, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号