...
首页> 外文期刊>Environmental Science & Technology >Xanthan Exopolysaccharide: Cu~(2+) Complexes Affected from the pH-Dependent Conformational State; Implications for Environmentally Relevant Biopolymers
【24h】

Xanthan Exopolysaccharide: Cu~(2+) Complexes Affected from the pH-Dependent Conformational State; Implications for Environmentally Relevant Biopolymers

机译:黄原外多糖:受pH依赖性构象态影响的Cu〜(2+)配合物;对环境相关的生物聚合物的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The conformational impact of environmental biopolymers on metal sorption was studied through Cu sorption on xanthan. The apparent Cu~(2+) complexation constant (logK; Cu~(2+) + L~- ⇄ CuL~+) decreased from 2.9 ± 0.1 at pH 3.5 to 2.5 ± 0.1 at pH 5.5 (ionic strength I = 0.1). This behavior is in apparent contradiction with basic thermodynamics, as usually the higher the pH the more cations bind. Our combined titration, circular dichroism and dynamic light scattering study indicated that the change observed in Cu bond strength relates to a conformational change of the structure of xanthan, which generates more chelating sites at pH 3.5 than at pH 5.5. This hypothesis was validated by the fact that the Cu sorption constants on xanthan were always higher than those measured on a mixture of pyruvic and glucuronic acids (logK = 2.2), which are the two constitutive ligands present in the xanthan monomer. This study shows the role of the structural conformation of natural biopolymers in metal bond strength. This finding may help to better predict the fate of Cu and other metals in acidic environmental settings such as aquatic media affected by acid mine drainage, as well as peats and acidic soils, and to better define optimal conditions for bioremediation processes.
机译:通过在黄原上的铜吸附研究了环境生物聚合物对金属吸附的构象影响。表观Cu〜(2+)络合常数(logK; Cu〜(2+)+ L〜-CuL〜+)从pH 3.5的2.9±0.1降至pH 5.5的2.5±0.1(离子强度I = 0.1) 。这种行为显然与基本的热力学矛盾,因为通常pH越高,阳离子结合的越多。我们的联合滴定,圆二色性和动态光散射研究表明,观察到的铜键强度的变化与黄原胶结构的构象变化有关,黄原胶在pH 3.5处比在pH 5.5处产生更多的螯合位点。这一假设通过以下事实得到了验证:黄原胶上的Cu吸附常数始终高于丙酮酸和葡萄糖醛酸混合物(logK = 2.2)(这是黄原胶单体中的两个组成性配体)的吸附常数。这项研究表明天然生物聚合物的结构构象在金属结合强度中的作用。这一发现可能有助于更好地预测酸性环境中的铜和其他金属的命运,例如受酸性矿山排水影响的水生介质以及泥炭和酸性土壤,并更好地确定生物修复过程的最佳条件。

著录项

  • 来源
    《Environmental Science & Technology》 |2016年第7期|3477-3485|共9页
  • 作者单位

    LEHNA/ENTPE/UCB/CNRS UMR 5023, F-69518 Lyon, France,ISTERRE/CNRS UMR 5275/Universite Grenoble Alpes/IRD, F-38058 Grenoble, France;

    LTHE/CNRS UMR 5564/Universite Grenoble Alpes/IRD, F-38058 Grenoble, France,ISTERRE/CNRS UMR 5275/Universite Grenoble Alpes/IRD, F-38058 Grenoble, France;

    ISTERRE/CNRS UMR 5275/Universite Grenoble Alpes/IRD, F-38058 Grenoble, France;

    ISTERRE/CNRS UMR 5275/Universite Grenoble Alpes/IRD, F-38058 Grenoble, France;

    CERMAV/CNRS UPR 5301, F-38041 Grenoble, France;

    IBS/CNRS UMR 5075/Universite Grenoble Alpes/CEA, F-38044 Grenoble, France;

    LEHNA/ENTPE/UCB/CNRS UMR 5023, F-69518 Lyon, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号