...
首页> 外文期刊>Environmental Science & Technology >Modeling Uptake of Hydrophobic Organic Contaminants into Polyethylene Passive Samplers
【24h】

Modeling Uptake of Hydrophobic Organic Contaminants into Polyethylene Passive Samplers

机译:对聚乙烯无源采样器中疏水性有机污染物的吸收进行建模

获取原文
获取原文并翻译 | 示例
           

摘要

Single-phase passive samplers are gaining acceptance as a method to measure hydrophobic organic contaminant (HOC) concentration in water. Although the relationship between the HOC concentration in water and passive sampler is linear at equilibrium, mass transfer models are needed for nonequilibrium conditions. We report measurements of organochlorine pesticide diffusion and partition coefficients with respect to polyethylene (PE), and present a Fickian approach to modeling HOC uptake by PE in aqueous systems. The model is an analytic solution to Fick's second law applied through an aqueous diffusive boundary layer and a polyethylene layer. Comparisons of the model with existing methods indicate agreement at appropriate boundary conditions. Laboratory release experiments on the organochlorine pesticides DDT, DDE, DDD, and chlordane in well-mixed slurries support the model's applicability to aqueous systems. In general, the advantage of the model is its application in the cases of well-agitated systems, low values of polyethylene-water partioning coefficients, thick polyethylene relative to the boundary layer thickness, and/or short exposure times. Another significant advantage is the ability to estimate, or at least bound, the needed exposure time to reach a desired C_(PE) without empirical model inputs. A further finding of this work is that polyethylene diffusivity does not vary by transport direction through the sampler thickness.
机译:单相无源采样器已被接受为测量水中疏水性有机污染物(HOC)浓度的方法。尽管水中的HOC浓度与无源采样器之间的关系在平衡时呈线性关系,但非平衡条件仍需要传质模型。我们报告了相对于聚乙烯(PE)的有机氯农药扩散和分配系数的测量,并提出了一种Fickian方法来模拟PE在水性体系中的HOC吸收。该模型是针对Fick第二定律的解析解,该定律通过水扩散边界层和聚乙烯层应用。该模型与现有方法的比较表明在适当的边界条件下一致性。在充分混合的浆料中对有机氯农药DDT,DDE,DDD和氯丹进行的实验室释放实验支持该模型在水性体系中的适用性。通常,该模型的优点是在系统搅拌良好,聚乙烯-水分配系数值低,相对于边界层厚度的聚乙烯厚和/或暴露时间短的情况下可应用该模型。另一个重要的优势是无需经验模型输入即可估算或至少限制达到所需C_(PE)所需的暴露时间的能力。这项工作的进一步发现是,聚乙烯的扩散率不会随通过采样器厚度的传输方向而变化。

著录项

  • 来源
    《Environmental Science & Technology》 |2015年第4期|2270-2277|共8页
  • 作者单位

    Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305-5080, United States;

    Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305-5080, United States;

    Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305-5080, United States,Stanford University, Room 191, Yang & Yamazaki Environment & Energy Building, 473 Via Ortega, Stanford, California 94305-4020;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号