...
首页> 外文期刊>Environmental Science & Technology >Elucidating N_2O Formation during the Cyclic NO_x Storage and Reduction Process Using CO as a Reductant
【24h】

Elucidating N_2O Formation during the Cyclic NO_x Storage and Reduction Process Using CO as a Reductant

机译:阐明使用CO作为还原剂的循环NO_x储存和还原过程中N_2O的形成

获取原文
获取原文并翻译 | 示例
           

摘要

The N_2O formation pathway and effect of H_2O on N_2O formation during the NO_x storage and reduction (NSR) process using CO as a reductant were investigated over a Pt-BaO/Al_2O_3 catalyst. The NSR activity measurements and transient in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments were performed to evaluate N_2O evolution and elucidate the N_2O formation mechanism. N_2O is formed in the lean, rich, and delay2 phases. In the lean phase, N_2O formation is related to the reactions between surface isocyanate and gaseous NO/O_2 and NO is more responsible for N_2O formation than O_2. Moreover, N_2O production decreases with H_2O because of the hydrolysis of isocyanate species. In the rich phase, the amount of N_2O formation also decreases in the presence of H_2O at a higher temperature because of the high reduction ability of H_2 generated from the water-gas shift (WGS) reaction. During the delay2 phase, N_2O is mainly formed by nitrite species reacting with Pt~0-CO. Furthermore, the presence of H_2O decreases the stability of nitrites and results in more N_2O production at a low temperature.
机译:以Pt-BaO / Al_2O_3为催化剂,研究了CO作为还原剂在NO_x存储还原过程中的N_2O形成途径和H_2O对N_2O形成的影响。进行了NSR活性测量和瞬态原位漫反射红外傅里叶变换光谱(DRIFTS)实验,以评估N_2O的演化并阐明N_2O的形成机理。 N_2O在稀,富和delay2相中形成。在稀相中,N_2O的形成与表面异氰酸酯和气态NO / O_2之间的反应有关,NO的形成要比O_2更为重要。此外,由于异氰酸酯物质的水解,N_2O的生成随H_2O的减少而降低。在富相中,由于水煤气变换(WGS)反应产生的H_2还原能力强,因此在较高温度下存在H_2O时,N_2O的形成量也会减少。在delay2阶段,N_2O主要由亚硝酸盐类物质与Pt〜0-CO反应形成。此外,H_2O的存在降低了亚硝酸盐的稳定性,并导致在低温下更多的N_2O产生。

著录项

  • 来源
    《Environmental Science & Technology》 |2015年第13期|7965-7973|共9页
  • 作者单位

    Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China;

    Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China;

    Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China;

    Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China;

    Key Laboratory for Green Chemical Technology of State Education Ministry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China,State Key Laboratory of Engines, Tianjin University, Tianjin 300072, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号