...
首页> 外文期刊>Environmental Science & Technology >Interplay of Natural Organic Matter with Flow Rate and Particle Size on Colloid Transport: Experimentation, Visualization, and Modeling
【24h】

Interplay of Natural Organic Matter with Flow Rate and Particle Size on Colloid Transport: Experimentation, Visualization, and Modeling

机译:天然有机物与流速和粒径在胶体运输中的相互作用:实验,可视化和建模

获取原文
获取原文并翻译 | 示例
           

摘要

The investigation on factors that affect the impact of natural organic matter (NOM) on colloid transport in complex hydraulic flow systems remains incomplete. Using our previously established approach, the interplay of flow rate and particle size on the NOM effect was quantified, using flow rates of 1 and 2 mL/min and particle sizes of SO and 200 run to represent small nanoparticles (1-100 nm) and large non-nano-microspheres (100-1000 nm) in the low-flow groundwater environment Latex particles, Suwannee River humic add (SRHA), and iron oxide-coated sand were used as model particles, NOM, and the aquifer medium, respectively.' The quantitative results show NOM blocked more sites for large particles at a high flow rate: 1 μg of SRHA blocked 5.95 × 10~9 microsphere deposition sites at 2 mL/min but only 7.38 × 10~8 nanoparticle deposition sites at 1 mL/min. The particle size effect dominated over the flow rate, and the overall effect of the two is antagonistic Granule-scale visualization of the particle packing on the NOM-presented sand surface corroborates the quantification results, revealing a more dispersed status of large particles at a high flow rate. We interpret this phenomenon as a polydispersivity effect resulting faun the differential size of the particles and NOM: high flow and a high particle size enlarge the ratio of particle-blocked to NOM-blocked areas and thus the NOM blockage. To our knowledge, this is the first model-assisted quantification on the interplay of NOM, flow rate, and particle size on colloid transport These findings are significant for nanorisk assessment and nanoremediation practices.
机译:影响天然有机物(NOM)对复杂液压流系统中胶体运输影响的因素的研究仍未完成。使用我们先前建立的方法,使用1和2 mL / min的流速以及SO和200的粒径分别代表小纳米颗粒(1-100 nm)和低流量地下水环境中的大型非纳米微球(100-1000 nm)分别用作模型粒子,NOM和含水层介质的乳胶粒子,Suwannee河腐殖质添加剂(SRHA)和氧化铁涂层的沙粒。 。”定量结果显示,NOM在高流速下会堵塞更多的大颗粒位点:1μgSRHA在2 mL / min时会阻止5.95×10〜9个微球沉积位点,而在1 mL / min时仅能阻止7.38×10〜8个纳米颗粒的沉积位点。 。粒度效应在流速上占主导地位,二者的整体效果是颗粒堆积在NOM呈现的砂面上的拮抗粒度显示,证实了定量结果,揭示了高颗粒下大颗粒的分散状态流量。我们将此现象解释为一种多分散性效应,导致颗粒与NOM的粒径不同:高流量和高粒径会增大颗粒阻塞与NOM阻塞区域的比率,从而增大NOM阻塞。据我们所知,这是关于NOM,流速和胶体运输粒径的相互作用的第一个模型辅助量化。这些发现对于纳米风险评估和纳米修复实践具有重要意义。

著录项

  • 来源
    《Environmental Science & Technology》 |2015年第22期|13385-13393|共9页
  • 作者单位

    Ministry of Education Key Lab for Eco-restoration of Contaminated Environment, Shenyang University, No. 21, South Wanghua Street, Shenyang 110044, China;

    College of Resources and Environment, Sichuan Agricultural University, No. 211, Huiming Road, Chengdu 611130, China;

    College of Resources and Environment, Sichuan Agricultural University, No. 211, Huiming Road, Chengdu 611130, China;

    Ministry of Education Key Lab for Eco-restoration of Contaminated Environment, Shenyang University, No. 21, South Wanghua Street, Shenyang 110044, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号