...
首页> 外文期刊>Environmental Science & Technology >Fermentation of Glycerol into Ethanol in a Microbial Electrolysis Cell Driven by a Customized Consortium
【24h】

Fermentation of Glycerol into Ethanol in a Microbial Electrolysis Cell Driven by a Customized Consortium

机译:在一个定制的联合体驱动的微生物电解池中,甘油发酵为乙醇

获取原文
获取原文并翻译 | 示例
           

摘要

The in situ generation of ethanol from glycerol-containing wastewater shows promise to improve the economics of the biodiesel industry. Consequently, we developed a microbial electrolysis cell (MEC) driven by the synergistic metabolisms of the exoelectrogen Geobacter sulfurreducens and the bacterium Clostridium cellobioparum, which fermented glycerol into ethanol in high yields (90%) and produced fermentative byproducts that served as electron donors for G. sulfurreducens. Syntrophic cooperation stimulated glycerol consumption, ethanol production, and the conversion of fermentation byproducts into cathodic H_2 in the MEC. The platform was further improved by adaptively evolving glycerol-tolerant strains with robust growth at glycerol loadings typical of biodiesel wastewater and by increasing the buffering capacity of the anode medium. This resulted in additional increases in glycerol consumption (up to 50 g/L) and ethanol production (up to 10 g/L) at rates that greatly exceeded the capacity of the anode biofilms to concomitantly remove the fermentation byproducts. As a result, 1,3-propanediol was generated as a metabolic sink for electrons not converted into electricity syntrophically. The results highlight the potential of consortia to process glycerol in MECs and provide insights into genetic engineering and system design approaches that can be implemented to further improve MEC performance to satisfy industrial needs.
机译:从含甘油的废水中原位产生乙醇显示出有望改善生物柴油工业的经济性。因此,我们开发了一种微生物电解槽(MEC),该微生物槽由外生电地球还原硫细菌和纤维梭状芽孢杆菌细菌的协同代谢驱动,可将甘油发酵成乙醇,产率高(90%),并产生发酵副产物,这些副产物可作为G的电子供体。减硫剂养分合作刺激了MEC中甘油的消耗,乙醇的产生以及发酵副产物向阴极H_2的转化。通过适应性发展耐甘油菌株,并在生物柴油废水的典型甘油负荷下强劲生长,并通过增加阳极介质的缓冲能力,进一步改善了平台。这导致甘油消耗(最高50 g / L)和乙醇生产(最高10 g / L)的额外增加,其速率大大超过了阳极生物膜随之去除发酵副产物的能力。结果,产生了1,3-丙二醇作为电子的代谢沉没未合成地转化为电。结果突出了财团在加工MEC中甘油的潜力,并提供了对基因工程和系统设计方法的见识,可以实施这些基因工程和系统设计方法以进一步提高MEC性能以满足工业需求。

著录项

  • 来源
    《Environmental Science & Technology》 |2014年第11期|6350-6358|共9页
  • 作者单位

    Department of Microbiology and Molecular Genetics, Michigan State University, 6190 fiiomedical and Physical Science Building, 567 Wilson Road, East Lansing, Michigan 48824, United States;

    Department of Microbiology and Molecular Genetics, Michigan State University, 6190 fiiomedical and Physical Science Building, 567 Wilson Road, East Lansing, Michigan 48824, United States,Department of Genetics, University of Georgia, Athens, Georgia 30602-7223;

    Department of Microbiology and Molecular Genetics, Michigan State University, 6190 fiiomedical and Physical Science Building, 567 Wilson Road, East Lansing, Michigan 48824, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号