...
首页> 外文期刊>Environmental Science & Technology >Microbially Driven Fenton Reaction for Degradation of the Widespread Environmental Contaminant 1,4-Dioxane
【24h】

Microbially Driven Fenton Reaction for Degradation of the Widespread Environmental Contaminant 1,4-Dioxane

机译:微生物驱动的Fenton反应降解广泛的环境污染物1,4-二恶烷

获取原文
获取原文并翻译 | 示例
           

摘要

The carcinogenic cyclic ether compound 1,4-dioxane is employed as a stabilizer of chlorinated industrial solvents and is a widespread environmental contaminant in surface water and groundwater. In the present study, a microbially driven Fenton reaction was designed to autocatalytically generate hydroxyl (HO~•) radicals that degrade 1,4-dioxane. In comparison to conventional (purely abiotic) Fenton reactions, the microbially driven Fenton reaction operated at circumneutral pH and did not the require addition of exogenous H_2O_2 or UV irradiation to regenerate Fe(Ⅱ) as Fenton reagents. The 1,4-dioxane degradation process was driven by pure cultures of the Fe(Ⅲ)-reducing facultative anaerobe Shewanella oneidensis manipulated under controlled laboratory conditions. S. oneidensis batch cultures were provided with lactate, Fe(Ⅲ), and 1,4-dioxane and were exposed to alternating aerobic and anaerobic conditions. The microbially driven Fenton reaction completely degraded 1,4-dioxane (10 mM initial concentration) in 53 h with an optimal aerobic-anaerobic cycling period or 3 h. Acetate and oxalate were detected as transient intermediates during the microbially driven Fenton degradation of 1,4-dioxane, an indication that conventional and microbially driven Fenton degradation processes follow similar reaction pathways. The microbially driven Fenton reaction provides the foundation for development of alternative in situ remediation technologies to degrade environmental contaminants susceptible to attack by HO~• radicals generated by the Fenton reaction.
机译:致癌性环状醚化合物1,4-二恶烷用作氯化工业溶剂的稳定剂,是地表水和地下水中广泛的环境污染物。在本研究中,设计了一种微生物驱动的Fenton反应,以自动催化生成可降解1,4-二恶烷的羟基(HO〜•)自由基。与常规(纯非生物)芬顿反应相比,微生物驱动的芬顿反应在环境pH下运行,不需要添加外源H_2O_2或紫外线照射即可再生Fe(Ⅱ)作为芬顿试剂。 1,4-二恶烷的降解过程是由在控制实验室条件下操作的还原Fe(Ⅲ)兼性厌氧厌氧希瓦氏菌的纯培养物驱动的。向葡萄球菌分批培养物提供乳酸,Fe(Ⅲ)和1,4-二恶烷,并使其在交替的需氧和厌氧条件下暴露。微生物驱动的Fenton反应在53 h内有最佳的需氧-厌氧循环时间或3 h完全降解了1,4-二恶烷(10 mM初始浓度)。在微生物驱动的Fenton降解1,4-二恶烷期间,乙酸盐和草酸盐被检测为瞬时中间体,这表明常规的和微生物驱动的Fenton降解过程遵循相似的反应路径。微生物驱动的Fenton反应为开发替代性原位修复技术提供了基础,该技术可降解易受Fenton反应生成的HO〜•自由基攻击的环境污染物。

著录项

  • 来源
    《Environmental Science & Technology》 |2014年第21期|12858-12867|共10页
  • 作者单位

    School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States;

    School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号