...
首页> 外文期刊>Environmental Science & Technology >Toxicokinetic Toxicodynamic (TKTD) Modeling of Ag Toxicity in Freshwater Organisms: Whole-Body Sodium Loss Predicts Acute Mortality Across Aquatic Species
【24h】

Toxicokinetic Toxicodynamic (TKTD) Modeling of Ag Toxicity in Freshwater Organisms: Whole-Body Sodium Loss Predicts Acute Mortality Across Aquatic Species

机译:淡水生物中Ag毒性的毒代动力学毒理动力学(TKTD)建模:全身钠流失可预测整个水生物种的急性死亡率。

获取原文
获取原文并翻译 | 示例
           

摘要

ToxicoKinetic ToxicoDynamic (TKTD) models are considered essential tools to further advance acute toxicity prediction of metals for a range of species and exposure conditions, but they are currently underutilized. We present a mechanistic TKTD model for acute toxicity prediction of silver (Ag) in freshwater organisms. In this new approach, we explicitly link relevant TKTD processes to species (physiological) characteristics, which facilitates model application to other untested freshwater organisms. The model quantifies the reduction in whole-body sodium concentration over time as a function of the target site inhibition over time, the target site density and the species-specific sodium turnover rate. Freshwater species are assumed to die instantly when they have lost a critical amount of their initial whole-body sodium concentration. Results show that mortality is significantly related to sodium loss (r~2 = 0.86) for various aquatic organisms and exposure durations. The model accurately predicts lethal effect concentrations for different freshwater organisms, including Daphnia magna, rainbow trout and juvenile crayfish, and is able to capture the observed size-specific variation of nearly 2 orders of magnitude in empirical LC_(50~s).
机译:ToxicoKinetic ToxicoDynamic(TKTD)模型被认为是进一步提高金属在一系列​​物种和暴露条件下的急性毒性预测的重要工具,但目前尚未得到充分利用。我们提出了一种机制的TKTD模型,用于预测淡水生物中银(Ag)的急性毒性。在这种新方法中,我们将相关的TKTD过程明确链接到物种(生理)特征,这有助于将模型应用于其他未经测试的淡水生物。该模型量化了随时间变化的全身钠浓度的降低,该降低是目标部位随时间推移的抑制,目标部位密度和物种特异性钠转化率的函数。假定淡水物种失去了其最初的全身钠浓度的关键量后会立即死亡。结果表明,死亡率与各种水生生物的钠损失(r〜2 = 0.86)和暴露持续时间密切相关。该模型可以准确地预测不同的淡水生物(包括大型蚤,虹鳟鱼和小龙虾)的致死作用浓度,并能够在经验LC_(50〜s)中捕获观察到的近2个数量级的特定大小变化。

著录项

  • 来源
    《Environmental Science & Technology》 |2014年第24期|14481-14489|共9页
  • 作者单位

    Department of Environmental Science, Radboud University (RU), Nijmegen, The Netherlands,Department of Environmental Health Sciences (EHS), School of Public Health, University of Michigan, Ann Arbor, United States;

    Department of Environmental Science, Radboud University (RU), Nijmegen, The Netherlands;

    Department of Environmental Science, Radboud University (RU), Nijmegen, The Netherlands;

    Department of Environmental Health Sciences (EHS), School of Public Health, University of Michigan, Ann Arbor, United States;

    Department of Environmental Health Sciences (EHS), School of Public Health, University of Michigan, Ann Arbor, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号