...
首页> 外文期刊>Environmental Science & Technology >High-Rate, High-Yield Production of Methanol by Ammonia-Oxidizing Bacteria
【24h】

High-Rate, High-Yield Production of Methanol by Ammonia-Oxidizing Bacteria

机译:氨氧化细菌高产高产甲醇

获取原文
获取原文并翻译 | 示例
           

摘要

The overall goal of this study was to develop an appropriate biological process for achieving autotrophic conversion of methane (CH_4) to methanol (CH_3OH). In this study, we employed ammonia-oxidizing bacteria (AOB) to selectively and partially oxidize CH_4 to CH_3OH. In fed-batch reactors using mixed nitrifying enrichment cultures from a continuous bioreactor, up to 59.89 ± 1.12 mg COD/L of CH_3OH was produced within an incubation time of 7 h, which is approximately ten times the yield obtained previously using pure cultures of Nitrosomonas europaea. The maximum specific rate of CH_4 to CH_3OH conversion obtained during this study was 0.82 mg CH_3OH COD/mg AOB biomass COD-d, which is 1.5 times the highest value reported with pure cultures. Notwithstanding these positive results, CH_4 oxidation to CH_3OH by AOB was inhibited by NH_3 (the primary substrate for the oxidative enzyme, ammonia monooxygenase, AMO) as well as the product, CH_3OH, itself. Further, oxidation of CH_4 to CH_3OH by AOB was also limited by reducing equivalents supply, which could be overcome by externally supplying hydroxylamine (NH_2OH) as an electron donor. Therefore, a potential optimum design for promoting CH_4 to CH_3OH oxidation by AOB could involve supplying NH_3 (needed to maintain AMO activity) uncoupled from the supply of NH_2OH and CH_4. Partial oxidation of CH_4-containing gases to CH_3OH by AOB represents an attractive platform for the conversion of a gaseous mixture to an aqueous compound, which could be used as a commodity chemical. Alternately, the nitrate and CH_3 OH thus produced could be channeled to a downstream anoxic zone in a biological nitrogen removal process to effect nitrate reduction to N_2, using an internally produced organic electron donor.
机译:这项研究的总体目标是开发一种合适的生物过程,以实现甲烷(CH_4)自养转化为甲醇(CH_3OH)。在这项研究中,我们采用了氨氧化细菌(AOB)将CH_4选择性和部分氧化为CH_3OH。在使用来自连续生物反应器的混合硝化富集培养物的分批进料反应器中,在7小时的培养时间内可产生高达59.89±1.12 mg COD / L的CH_3OH,这大约是以前使用亚硝化单胞菌纯培养物获得的产量的十倍欧罗巴。在这项研究中,CH_4转化为CH_3OH的最大比值为0.82 mg CH_3OH COD / mg AOB生物量COD-d,是纯培养物报道的最高值的1.5倍。尽管取得了这些积极成果,但NH_3(氧化酶的主要底物氨单加氧酶AMO)以及产物CH_3OH本身仍抑制了AOB将CH_4氧化为CH_3OH。此外,通过减少当量供应也限制了AOB将CH_4氧化为CH_3OH,这可以通过外部供应羟胺(NH_2OH)作为电子供体来克服。因此,通过AOB促进CH_4到CH_3OH氧化的潜在最佳设计可能涉及不与NH_2OH和CH_4的供应耦合地供应NH_3(需要保持AMO活性)。通过AOB将含CH_4的气体部分氧化为CH_3OH代表了一个诱人的平台,可将气态混合物转化为水性化合物,将其用作商品化学品。或者,可以使用内部产生的有机电子给体在生物脱氮过程中将由此产生的硝酸盐和CH_3 OH引导至下游的缺氧区,以将硝酸盐还原为N_2。

著录项

  • 来源
    《Environmental Science & Technology》 |2013年第7期|3167-3173|共7页
  • 作者

    Edris Taher; Kartik Chandran;

  • 作者单位

    Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, New York 10027,United States;

    Department of Earth and Environmental Engineering, Columbia University, 500 West 120th Street, New York, New York 10027,United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号