...
首页> 外文期刊>Environmental Science & Technology >Remediation of Polychlorinated Biphenyl Impacted Sediment by Concurrent Bioaugmentation with Anaerobic Halorespiring and Aerobic Degrading Bacteria
【24h】

Remediation of Polychlorinated Biphenyl Impacted Sediment by Concurrent Bioaugmentation with Anaerobic Halorespiring and Aerobic Degrading Bacteria

机译:厌氧盐雾和需氧降解细菌的同时生物强化修复多氯联苯影响的底泥

获取原文
获取原文并翻译 | 示例
           

摘要

Bioremediation of sediments contaminated with commercial polychlorinated biphenyls (PCBs) is potentially achievable by the sequential activity of anaerobic halorespiration to convert higher chlorinated congeners to less chlorinated congeners that are susceptible to aerobic respiratory degradation. The efficacy of bioaugmentation with anaerobic halorespiring Dchalobium chtorocoercia DF1 and aerobic Burkholderia xenovorans LB400 added concurrently with granulated activated carbon (GAC) as a delivery system was determined in 2 L laboratory mesocosms containing weathered Aroclor-contaminated sediment from Baltimore Harbor, MD, USA. The greatest effect was seen in the mesocosm bioaugmented with both DF1 and LB400 together, which resulted in an 80% decrease by mass of PCBs, from 8 to <2 mg/kg after 120 days. There was no significant increase in lesser-chlorinated congeners, indicating that both anaerobic dechlorination by DF1 and aerobic degradation by LB400 occurred. In contrast, nonbioaugmented controls containing filtered culture supernatant showed only a 2596 decrease in total levels of PCBs after 365 days, which was likely due to biostimulation of the indigenous population by the medium. Direct colony counts and molecular analysis targeting a putative reductive dehalogenase gene of D. chlorocoercia or the bphA gene of LB400 showed the presence of viable DF1 and LB400 in bioaugmented mesocosms after 365 days, indicating that both nonindigenous strains were sustainable within the indigenous microbial community. These results suggest that an in situ treatment employing the simultaneous application of anaerobic and aerobic microorganisms could be an effective and environmentally sustainable strategy to reduce PCBs levels in contaminated sediment.
机译:厌氧性呼吸作用的序贯活动可将受商业多氯联苯(PCBs)污染的沉积物进行生物修复,从而将较高的氯化同类物转化为易于发生有氧呼吸降解的较少氯化的同类物。在来自美国马里兰州巴尔的摩港的2 L实验室风湿病中,确定了厌氧的盐雾呼吸机Dchalobium chtorocoercia DF1和好氧的Burkholderia xenovorans LB400与颗粒活性炭(GAC)一起添加的生物强化效果。在以DF1和LB400共同增强的介观生物膜中看到了最大的效果,这导致PCB的质量下降了80%,在120天后从8降低到了<2 mg / kg。较少氯化的同类物没有显着增加,表明DF1进行厌氧脱氯和LB400进行有氧降解。相比之下,在365天后,含有过滤的培养上清液的未经过生物强化的对照组的PCBs总水平仅降低了2596,这可能是由于培养基对土著居民的生物刺激所致。直接菌落计数和针对假定的D. chlorocoercia还原性脱卤化氢酶基因或LB400的bphA基因的分子分析显示,经过365天的生物强化后的中膜存在有活力的DF1和LB400,表明这两种非本地菌株在本地微生物群落中都是可持续的。这些结果表明,同时应用厌氧和好氧微生物的原位处理可能是减少污染沉积物中多氯联苯含量的有效和环境可持续的策略。

著录项

  • 来源
    《Environmental Science & Technology》 |2013年第8期|3807-3815|共9页
  • 作者单位

    Institute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland 21202, United States;

    UPMC Univ Paris 06, UMR 8882, LECOB, Observatoire Oceanologique, F-66650, Banyuls/Mer, France;

    Marine Biomedicine and Environmental Science Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29412, United States;

    Institute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland 21202, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号