...
首页> 外文期刊>Environmental Science & Technology >Iron Minerals Mediated Interfacial Hydrolysis of Chloramphenicol Antibiotic under Limited Moisture Conditions
【24h】

Iron Minerals Mediated Interfacial Hydrolysis of Chloramphenicol Antibiotic under Limited Moisture Conditions

机译:铁矿物介导氯霉素抗生素介导的界面水解在有限的水分条件下

获取原文
获取原文并翻译 | 示例
           

摘要

Iron minerals are important soil components; however, little information is available for the transformation of antibiotics on iron mineral surfaces, especially under limited moisture conditions. In this study, we investigated the catalytic performance of four iron minerals (maghemite, hematite, goethite, and siderite) for the hydrolysis of chloramphenicol (CAP) antibiotic at different moisture conditions. All the iron oxides could efficiently catalyze CAP hydrolysis with the half-lives <6 days when the surface water content was limited, which was controlled by the atmospheric relative humidity of 33-76%. Different minerals exhibited distinctive catalytic processes, depending on the surface properties. H-bonding or Lewis acid catalysis was proposed for surface hydrolytic reaction on iron oxides, which however was almost completely inhibited when the surface water content was >10 wt % due to the competition of water molecules for surface reactive sites. For siderite, the CAP hydrolysis was resistant to excessive surface water. A bidentate H-bonding interaction mechanism would account for CAP hydrolysis on siderite. The results of this study highlight the importance of surface moisture on the catalytic performance of iron minerals. The current study also reveals a potential degradation pathway for antibiotics in natural soil, which has been neglected before.
机译:铁矿物是重要的土壤成分;但是,很少的信息可用于转化铁矿石上的抗生素,特别是在有限的水分条件下。在这项研究中,我们研究了四种铁矿物(磁性矿石,赤铁矿,甲酸酯和胶石)的催化性能,用于在不同的水分条件下水解氯霉素(帽)抗生素。所有氧化铁都可以用半衰期有效地催化帽水解<6天,当表面含水量有限,由大气相对湿度为33-76%的控制。不同的矿物质表现出独特的催化过程,这取决于表面性质。提出了H键合或路易斯酸催化用于对氧化铁上的表面水解反应,然而由于由于水分子用于表面反应位点的水分子竞争,几乎完全抑制。对于硫酸盐,盖子水解对过量的表面水耐药。双齿H键合相互作用机制将占赤产物盖子水解。本研究的结果突出了表面水分对铁矿物催化性能的重要性。目前的研究还揭示了天然土壤中抗生素的潜在降解途径,这些途径在之前被忽视。

著录项

  • 来源
    《Environmental Science & Technology》 |2021年第14期|9569-9578|共10页
  • 作者单位

    State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University Nanjing 210023 Jiangsu China;

    State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University Nanjing 210023 Jiangsu China;

    State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University Nanjing 210023 Jiangsu China;

    State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University Nanjing 210023 Jiangsu China;

    State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University Nanjing 210023 Jiangsu China;

    State Key Laboratory of Pollution Control and Resource Reuse School of the Environment Nanjing University Nanjing 210023 Jiangsu China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号