...
首页> 外文期刊>Environmental Science & Technology >Contributions of Coagulation, Deposition, and Ventilation to the Removal of Airborne Nanoparticles in Indoor Environments
【24h】

Contributions of Coagulation, Deposition, and Ventilation to the Removal of Airborne Nanoparticles in Indoor Environments

机译:凝结,沉积和通风到室内环境中的空气纳米颗粒去除的贡献

获取原文
获取原文并翻译 | 示例
           

摘要

Airborne nanoparticles are frequently released in occupied spaces due to episodic indoor source activities. Once generated, nanoparticles undergo aerosol transformation processes such as coagulation and deposition. These aerosol processes lead to changes in particle concentration and size distribution over time and accordingly affect human exposure to nanoparticles. The present study establishes a framework for an indoor particle dynamic model that can predict time- and size-dependent particle concentrations after episodic indoor emission events. The model was evaluated with six experimental data sets obtained from previous measurement studies in the literature. The indoor particle dynamic model quantified the relative contributions of three particle loss mechanisms (i.e., coagulation, deposition, and ventilation) to the total reduction in number concentration. The results show that particle coagulation and indoor surface deposition are two dominant processes responsible for temporal changes in particle size and concentration following indoor emission events. The first-order equivalent coagulation loss rate notably varies with indoor emission source and accounts for up to 59% of the total particle loss for burning a candle, 42% for broiling a fish, and 10% for burning incense. The results reveal that while the coagulation loss rate changes markedly with the particle concentration and source type, the deposition loss rate is more dependent on particle size. Compared to coagulation and deposition, the effect of ventilation is marginal for most of the nanoparticle emission events indoors; however, ventilation loss becomes pronounced with the decrease of particle concentration below 5 × 10~4 cm~(-3), especially for particles larger than 100 nm in aerodynamic diameter.
机译:由于剧目的室内源活动,在占用空间中经常释放空气纳米粒子。一旦产生,纳米颗粒经历气溶胶转化过程,例如凝固和沉积。这些气溶胶过程导致颗粒浓度和尺寸分布的变化随时间的变化,因此影响人们对纳米颗粒的暴露。本研究建立了室内粒子动态模型的框架,其可以预测扩展室内排放事件后的时间和大小依赖性颗粒浓度。通过从文献中以前的测量研究获得的六种实验数据集评估该模型。室内颗粒动态模型量化了三种颗粒损失机制的相对贡献(即,凝结,沉积和通风)到数量浓度的总降低。结果表明,颗粒凝固和室内表面沉积是两个主导过程,其负责室内排放事件后粒度和浓度的时间变化。一阶等效的凝固损失率明显地随室内排放来源而变化,占燃烧蜡烛总粒子损失的高达59%,42%用于烧伤鱼类,10%的燃烧燃烧。结果表明,虽然凝血损失率与颗粒浓度和源型显着变化,但沉积损耗率更依赖于粒度。与凝血和沉积相比,通风的效果对于室内大多数纳米粒子发射事件的边缘是边缘的;然而,随着5×10〜4cm〜(3)低于5×10〜4cm〜(3)的降低,通气损失变得显着,特别是对于空气动力学直径大于100nm的颗粒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号