...
首页> 外文期刊>Environmental Science & Technology >Model Complexity Needed for Quantitative Analysis of High Resolution Isotope and Concentration Data from a Toluene-Pulse Experiment
【24h】

Model Complexity Needed for Quantitative Analysis of High Resolution Isotope and Concentration Data from a Toluene-Pulse Experiment

机译:甲苯-脉冲实验对高分辨率同位素和浓度数据进行定量分析所需的模型复杂性

获取原文
获取原文并翻译 | 示例
           

摘要

Separating microbial- and physical-induced effects on the isotope signals of contaminants has been identified as a challenge in interpreting compound-specific isotope data. In contrast to simple analytical tools, such as the Rayleigh equation, reactive-transport models can account for complex interactions of different fractionating processes. The question arises how complex such models must be to reproduce the data while the model parameters remain identifiable. In this study, we reanalyze the high-resolution data set of toluene concentration and toluene-specific δ~(13)C from the toluene-pulse experiment performed by Qiu et al. (this issue). We apply five reactive-transport models, differing in their degree of complexity. We uniquely quantify degradation and sorption properties of the system for each model, estimate the contributions of biodegradation-induced, sorption-induced, and transverse-dispersion-induced isotope fractionation to the overall isotope signal, and investigate the error introduced in the interpretation of the data when individual processes are neglected. Our results show that highly resolved data of both concentration and isotope ratios are needed for unique process identification facilitating reliable model calibration. Combined analysis of these highly resolved data demands reactive transport models accounting for nonlinear degradation kinetics and isotope fractionation by both reactive and physical processes such as sorption and transverse dispersion.
机译:分离微生物和物理对污染物同位素信号的影响已被认为是解释化合物特异性同位素数据的挑战。与简单的分析工具(例如Rayleigh方程)相比,反应运输模型可以说明不同分馏过程之间的复杂相互作用。提出了这样的问题,即在保持模型参数可识别的同时,重现数据的模型必须多么复杂。在这项研究中,我们根据Qiu等人进行的甲苯脉冲实验重新分析了甲苯浓度和特定于甲苯的δ〜(13)C的高分辨率数据集。 (这个问题)。我们应用了五个反应性运输模型,它们的复杂程度不同。我们对每个模型唯一地量化系统的降解和吸附特性,估算生物降解引起的,吸附引起的和横向分散引起的同位素分馏对总同位素信号的贡献,并研究在解释中所引入的误差忽略单个过程时的数据。我们的结果表明,对于独特的过程识别,需要可靠的模型校准,需要高度解析的浓度和同位素比数据。对这些高度解析的数据的综合分析需要反应性输运模型,该模型应考虑通过反应性和物理过程(例如吸附和横向分散)进行的非线性降解动力学和同位素分馏。

著录项

  • 来源
    《Environmental Science & Technology》 |2013年第13期|6900-6907|共8页
  • 作者单位

    Center for Applied Geoscience, University of Tuebingen, Hoelderlinstrasse 12, D-72074 Tuebingen, Germany;

    Institute of Groundwater Ecology, Helmholtz Zentrum Mueenchen, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany;

    Institute of Groundwater Ecology, Helmholtz Zentrum Mueenchen, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany;

    Center for Applied Geoscience, University of Tuebingen, Hoelderlinstrasse 12, D-72074 Tuebingen, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号