首页> 外文期刊>Environmental Science & Technology >Methane Bioattenuation and Implications for Explosion Risk Reduction along the Groundwater to Soil Surface Pathway above a Plume of Dissolved Ethanol
【24h】

Methane Bioattenuation and Implications for Explosion Risk Reduction along the Groundwater to Soil Surface Pathway above a Plume of Dissolved Ethanol

机译:甲烷对甲烷的生物衰减作用及其对降低地下水向一溶乙醇上方土壤表面通路的爆炸危险的意义

获取原文
获取原文并翻译 | 示例
           

摘要

Fuel ethanol releases can stimulate methanogenesis in impacted aquifers, which could pose an explosion risk if methane migrates into enclosed spaces where ignitable conditions exist. To assess this potential risk, a flux chamber was emplaced on a pilot-scale aquifer exposed to continuous release (21 months) of an ethanol solution (10% v:v) that was introduced 22.S cm below the water table. Despite methane concentrations within the ethanol plume reaching saturated levels (20-23 mg/L), the maximum methane concentration reaching the chamber (21 ppm.) was far below the lower explosion limit in air (50,000 ppm,). The low concentrations of methane observed in the chamber are attributed to methanotrophic activity, which was highest in the capillary fringe. This was indicated by methane degradation assays in microcosms prepared with soil samples from different depths, as well as by PCR measurements of pmoA, which is a widely used functional gene biomarker for methanotrophs. Simulations with the analytical vapor intrusion model "Biovapor"corroborated the low explosion risk associated with ethanol fuel releases under more generic conditions. Model simulations also indicated that depending on site-specific conditions, methane oxidation in the unsaturated zone could deplete the available oxygen and hinder aerobic benzene biodegradation, thus increasing benzene vapor intrusion potential. Overall, this study shows the importance of methanotrophic activity near the water table to attenuate methane generated from dissolved ethanol plumes and reduce its potential to migrate and accumulate at the surface.
机译:燃料乙醇的释放可以刺激受影响的含水层中的甲烷生成,如果甲烷迁移到存在可燃条件的封闭空间中,则可能引起爆炸危险。为了评估这种潜在风险,将通量室放置在中试规模的含水层上,该含水层暴露于连续释放(21个月)的乙醇溶液(10%v:v)中,该乙醇溶液被引入到地下水位以下22. cm处。尽管乙醇羽流中的甲烷浓度达到饱和水平(20-23 mg / L),但到达燃烧室的最大甲烷浓度(21 ppm。)远低于空气中的爆炸下限(50,000 ppm)。在室内观察到的甲烷浓度低归因于甲烷营养活动,该活动在毛细管边缘最高。这是通过用不同深度的土壤样品制备的微观世界中的甲烷降解分析以及pmoA的PCR测量所表明的,pmoA是广泛用于甲烷营养生物的功能基因生物标记。使用分析性蒸汽入侵模型“ Biovapor”进行的模拟证实了在更一般的条件下与乙醇燃料释放相关的低爆炸风险。模型模拟还表明,根据特定地点的条件,不饱和区中的甲烷氧化会耗尽可用的氧气并阻碍好氧苯的生物降解,从而增加苯蒸气的入侵潜力。总体而言,这项研究表明,地下水位附近的甲烷营养活动对于减弱由溶解的乙醇羽流产生的甲烷并降低其在地表迁移和积累的潜力至关重要。

著录项

  • 来源
    《Environmental Science & Technology》 |2012年第11期|p.6013-6019|共7页
  • 作者单位

    Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 7700S, United States;

    Department of Civil and Environmental Engineering, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-4003,United States;

    Shell Global Solutions (US) Inc., Westhollow Technology Center, 3333 Highway Six South, Houston, Texas 77210, United States;

    Shell Global Solutions (US) Inc., Westhollow Technology Center, 3333 Highway Six South, Houston, Texas 77210, United States;

    Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 7700S, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号