...
首页> 外文期刊>Environmental Science & Technology >Investigation of Adsorption Behavior of Mercury on Au(111) from First Principles
【24h】

Investigation of Adsorption Behavior of Mercury on Au(111) from First Principles

机译:从第一性原理研究汞对Au(111)的吸附行为

获取原文
获取原文并翻译 | 示例
           

摘要

The structural and electronic properties of Hg, SO_2, HgS,and HgO adsorption on Au( 111) surfaces have been determined using density functional theory with the generalized gradient approximation. The adsorption strength of Hg on Au(111) increases by a factor of 1.3 (from -9.7 to -12.6 kcal/mol) when the number of surface vacancies increases from 0 to 3; however, the adsorption energy decreases with more than three vacancies. In the case of SO_2 adsorption on Au( 111), the Au surface atoms are better able to stabilize the SO_2 molecule when they are highly undercoordinated. The SO, adsorption stability is enhanced from -0.8 to -9.3 kcal/mol by increasing the number of vacancies from 0 to 14, with the lowest adsorption energy of -10.2 kcal/mol at 8 Au vacancies. Atomic sulfur and oxygen precovered-Au(111) surfaces lower the Hg stability when Hg adsorbs on the top of S and O atoms. However, a cooperative effect between adjacent Hg atoms is observed as the number of S and Hg atoms increases on the perfect Au(111) surface, resulting in an increase in the magnitude of Hg adsorption. Details of the electronic structure properties of the Hg-Au systems are also discussed.
机译:利用密度泛函理论和广义梯度近似法确定了Hg,SO_2,HgS和HgO在Au(111)表面的吸附结构和电子性质。当表面空位数从0增加到3时,Hg在Au(111)上的吸附强度增加1.3倍(从-9.7到-12.6 kcal / mol);但是,三个以上的空位会降低吸附能。在SO_2吸附在Au(111)上的情况下,当Au表面原子高度不充分配位时,它们可以更好地稳定SO_2分子。通过将空位数从0增加到14,SO 2的吸附稳定性从-0.8增至-9.3 kcal / mol,在8 Au的空位下最低吸附能为-10.2 kcal / mol。当Hg吸附在S和O原子的顶部时,原子上预先覆盖的硫和氧Au(111)表面会降低Hg的稳定性。但是,随着在完美Au(111)表面上S和Hg原子数的增加,可以观察到相邻Hg原子之间的协同效应,从而导致Hg吸附量的增加。还讨论了Hg-Au系统的电子结构性质的细节。

著录项

  • 来源
    《Environmental Science & Technology》 |2012年第13期|p.7260-7266|共7页
  • 作者单位

    Department of Energy Resources Engineering, Stanford University, 367 Panama Street, Green Earth Sciences, Stanford, California 94305-2220, United States;

    Department of Energy Resources Engineering, Stanford University, 367 Panama Street, Green Earth Sciences, Stanford, California 94305-2220, United States;

    Department of Energy Resources Engineering, Stanford University, 367 Panama Street, Green Earth Sciences, Stanford, California 94305-2220, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号