...
首页> 外文期刊>Environmental Science & Technology >Synergy between Secondary Organic Aerosols and Long-Range Transport of Polycyclic Aromatic Hydrocarbons
【24h】

Synergy between Secondary Organic Aerosols and Long-Range Transport of Polycyclic Aromatic Hydrocarbons

机译:次级有机气溶胶与多环芳烃的长距离传输之间的协同作用

获取原文
获取原文并翻译 | 示例
           

摘要

Polycyclic aromatic hydrocarbons (PAHs), known for their harmful health effects, undergo long-range transport (LRT) when adsorbed on and/or absorbed in atmospheric particles. The association between atmospheric particles, PAHs, and their LRT has been the subject of many studies yet remains poorly understood. Current models assume PAHs instantaneously attain reversible gas- particle equilibrium. In this paradigm, as gas-phase PAH concentrations are depleted due to oxidation and dilution during LRT, particle-bound PAHs rapidly evaporate to re-establish equilibrium leading to severe underpredictions of LRT potential of particle-bound PAHs. Here we present a new, experimentally based picture in which PAHs trapped inside highly viscous semisolid secondary organic aerosol (SOA) particles, during particle formation, are prevented from evaporation and shielded from oxidation. In contrast, surface-adsorbed PAHs rapidly evaporate leaving no trace. We find synergetic effects between hydrophobic organics and SOA - the presence of hydrophobic organics inside SOA particles drastically slows SOA evaporation to the point that it can almost be ignored, and the highly viscous SOA prevents PAH evaporation ensuring efficient LRT. The data show the assumptions of instantaneous reversible gas-particle equilibrium for PAHs and SOA are fundamentally flawed, providing an explanation for the persistent discrepancy between observed and predicted particle-bound PAHs.
机译:多环芳烃(PAHs)以其有害的健康影响而闻名,当其吸附和/或吸收到大气颗粒中时会经历长距离传输(LRT)。大气颗粒物,多环芳烃及其LRT之间的联系一直是许多研究的主题,但仍知之甚少。当前的模型假设多环芳烃瞬间达到可逆的气体-颗粒平衡。在此范式中,由于LRT期间的氧化和稀释使气相PAH浓度耗尽,颗粒结合的PAH迅速蒸发以重新建立平衡,导致颗粒结合的PAH的LRT潜力严重不足。在这里,我们提供了一个新的基于实验的图片,其中在颗粒形成过程中被困在高粘度半固体次生有机气溶胶(SOA)颗粒内的PAH被阻止蒸发并被氧化。相反,表面吸附的PAH迅速蒸发,没有任何痕迹。我们发现疏水性有机物和SOA之间具有协同作用-SOA颗粒中疏水性有机物的存在大大降低了SOA的蒸发速度,使其几乎可以忽略不计,而高粘度的SOA阻止了PAH蒸发,从而确保了有效的LRT。数据表明,PAH和SOA的瞬时可逆气体-颗粒平衡的假设从根本上是有缺陷的,这为观察到的和预测的与颗粒结合的PAH之间的持续差异提供了解释。

著录项

  • 来源
    《Environmental Science & Technology》 |2012年第22期|12459-12466|共8页
  • 作者单位

    Pacific Northwest National Laboratory, Richland, Washington 99354, United States;

    Imre Consulting, Richland, Washington 99352, United States;

    Pacific Northwest National Laboratory, Richland, Washington 99354, United States;

    University of Washington, Seattle, Washington 98195, United States;

    Pacific Northwest National Laboratory, Richland, Washington 99354, United States;

    Pacific Northwest National Laboratory, Richland, Washington 99354, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号