...
首页> 外文期刊>Environmental Science & Technology >Use of a Liter-Scale Microbial Desalination Cell As a Platform to Study Bioelectrochemical Desalination with Salt Solution or Artificial Seawater
【24h】

Use of a Liter-Scale Microbial Desalination Cell As a Platform to Study Bioelectrochemical Desalination with Salt Solution or Artificial Seawater

机译:升规模的微生物脱盐池作为研究盐溶液或人工海水生物电化学脱盐的平台

获取原文
获取原文并翻译 | 示例
           

摘要

Bioelectrochemical desalination is potentially advantageous because of bioenergy production and integrated wastewater treatment and desalination. In this work, die performance and energy benefits of a liter-scale upflow microbial desalination cell (UMDC) were evaluated. The UMDC desalinated both salt solution (NaCl) and artificial seawater, and the removal rate of total dissolved solid (TDS) increased with an increased hydraulic retention time, although TDS reduction in artificial seawater was lower than that in salt solution. Our analysis suggested that electricity generation was a predominant factor in removing TDS (more than 70%), and that other factors, like water osmosis and unknown processes, also contributed to TDS reduction. It was more favorable given the high energy efficiency, when treating salt solution, to operate the UMDC under the condition of high power output compared with that of high current generation because of the amount of energy production; while high current generation was more desired with seawater desalination because of lower salinity in the effluent. Under the condition of the high power output and the assumption of the UMDC as a predesalination in connection with a reversal osmosis (RO) system, the UMDC could produce electrical energy that might potentially account for 58.1% (salt solution) and 16.5% (artificial seawater) of the energy required by the downstream RO system. Our results demonstrated the great potential of bioelectrochemical desalination.
机译:由于生物能源的生产以及废水的综合处理和脱盐,生物电化学脱盐技术具有潜在的优势。在这项工作中,评估了公升规模的上流微生物脱盐池(UMDC)的模具性能和能源效益。 UMDC淡化了盐溶液(NaCl)和人造海水,并且总溶解固体(TDS)的去除率随着水力停留时间的增加而增加,尽管人造海水中TDS的减少低于盐溶液中的减少。我们的分析表明,发电是去除TDS的主要因素(超过70%),其他因素(如水渗透和未知过程)也有助于TDS的降低。鉴于处理盐溶液时的高能源效率,与高电流产生相比,在高功率输出的条件下运行UMDC更为有利,因为它产生的能量很多;由于海水中的盐分较低,而海水淡化更需要高电流产生。在高功率输出的情况下,假设UMDC是与反渗透(RO)系统相关的预淡化设备,则UMDC可能产生的电能可能占58.1%(盐溶液)和16.5%(人工)。海水)下游反渗透系统所需的能源。我们的结果证明了生物电化学脱盐的巨大潜力。

著录项

  • 来源
    《Environmental Science & Technology》 |2011年第10期|p.4652-4657|共6页
  • 作者单位

    Department of Civil Engineering and Mechanics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States;

    Gannett Fleming, Inc., Harrisburg, Pennsylvania 17106, United States;

    Department of Civil Engineering and Mechanics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号