...
首页> 外文期刊>Environmental Science & Technology >Transverse Mixing Enhancement due to Bacterial Random Motility in Porous Microfluidic Devices
【24h】

Transverse Mixing Enhancement due to Bacterial Random Motility in Porous Microfluidic Devices

机译:多孔微流体装置中细菌随机运动引起的横向混合增强

获取原文
获取原文并翻译 | 示例
           

摘要

Bacterial swimming in groundwater may create flow disturbances in the surrounding microenvironment thereby enhancing contaminant mixing. Porous microfluidic devices (MFDs) were fabricated in three different pore geometry designs: uniform grain size with large pore throats (MFD-I), nonunifonn grain size with restricted pore space (MFD-II), and uniform grain size with small pore throats (MFD-III). Escher-ichia ali HCB33 was used to assess the effect of bacterial random motility on transverse mixing of a tracer, fluorescent labeled dextran, under three experimental conditions in which motile bacteria, nonmotile bacteria, and plain buffer susp- ensions were flown through the MFDs at four different now rates. Mixing was quantified in terms of the best-fit elective transverse dispersion coefficient ((D_(cy))_(eff)).Amixing enhancement index (MEI) was defined as the ratio of the (D_(cy))_(eff) of tracer in experiments with motile bacteria and without bacteria. Motile bacteria caused a maximum 5-6 fold increase in MEI in MFD II, a nearly 4-fold increase in MFD-I, and very little observed change in MFD-III. The apparent transverse dispersivities (a_(app)) of MFD-II and MFD-I increased by 3 and 2.3 times, respectively, with no change in MFD-III. These observations indicate that both pore throat size and pore arrangement are critical factors for contaminant mixing in porous media.
机译:地下水中的细菌游动会在周围的微环境中产生流动扰动,从而增强污染物的混合。多孔微流体装置(MFD)以三种不同的孔几何结构设计制造:具有大孔喉的均匀晶粒尺寸(MFD-I),具有受限孔空间的非均质晶粒尺寸(MFD-II)和具有小孔喉的均匀晶粒尺寸(MFD-II) MFD-III)。在三种实验条件下,运动菌,非运动菌和普通缓冲液悬浮液通过MFD,在三种实验条件下,使用埃希氏菌属ali HCB33评估细菌随机运动对示踪剂,荧光标记的葡聚糖的横向混合的影响。现在有四种不同的费率。混合是根据最佳拟合的选择性横向色散系数((D_(cy))_(eff))来量化的。混合增强指数(MEI)被定义为(D_(cy))_(eff)的比率示踪剂在有运动细菌和无细菌的实验中的应用。运动性细菌在MFD II中导致MEI最多增加5-6倍,在MFD-I中增加近4倍,而观察到的MFD-III变化很小。 MFD-II和MFD-I的表观横向分散度(a_(app))分别增加了3倍和2.3倍,而MFD-III没有变化。这些观察结果表明,孔喉的大小和孔的排列都是在多孔介质中污染物混合的关键因素。

著录项

  • 来源
    《Environmental Science & Technology》 |2011年第20期|p.8780-8787|共8页
  • 作者单位

    Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia,Pennsylvania 19104, United States;

    Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia,Pennsylvania 19104, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号