...
首页> 外文期刊>Environmental Science & Technology >Effects of Oxyanions, Natural Organic Matter, and Bacterial Cell Numbers on the Bioreduction of Lepidocrocite (γ-FeOOH) and the Formation of Secondary Mineralization Products
【24h】

Effects of Oxyanions, Natural Organic Matter, and Bacterial Cell Numbers on the Bioreduction of Lepidocrocite (γ-FeOOH) and the Formation of Secondary Mineralization Products

机译:氰化物,天然有机物和细菌细胞数对纤铁矿(γ-FeOOH)生物还原和次级矿化产物形成的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Microbial reduction of Fe(III) oxides results in the production of Fe(II) and may lead to the subsequent formation of Fe(II)-bearing secondary mineralization products including magnetite, siderite, vivianite, chukanovite (ferrous hydroxy carbonate (FHC)), and green rust; however, the factors controlling the formation of specific Fe(II) phases are often not well-defined. This study examined effects of (ⅰ) a range of inorganic oxyanions (arsenate, borate, molybdate, phosphate, silicate, and tungstate), (ⅱ) natural organic matter (citrate, oxalate, microbial extracellular polymeric substances [EPS], and humic substances), and (ⅲ) the type and number of dissimilatory iron-reducing bacteria on the bioreduction of lepidocrocite and formation of Fe(II)-bearing secondary mineralization products. The bioreduction kinetics clustered into two distinct Fe(II) production profiles. "Fast" Fe(II) production kinetics [19-24 mM Fe(II) d~(-1)) were accompanied by formation of magnetite and FHC in the unamended control and in systems amended with borate, oxalate, gellan EPS, or Pony Lake fulvic acid or having "low" cell numbers. Systems amended with arsenate, citrate, molybdate, phosphate, silicate, tungstate, EPS from Shewanella putrefaciens CN32, or humic substances derived from terrestrial plant material or with "high" cell numbers exhibited comparatively slow Fe(II) production kinetics (1.8-4.0 mM Fe(II) d~(-1)) and the formation of green rust. The results are consistent with a conceptual model whereby competitive sorption of more strongly bound anions blocks access of bacterial cells and reduced electron-shuttling compounds to sites on the iron oxide surface, thereby limiting the rate of bioreduction.
机译:Fe(III)氧化物的微生物还原导致生成Fe(II),并可能导致随后形成含Fe(II)的次级矿化产品,包括磁铁矿,菱铁矿,堇青石,chukanovite(羟基碳酸亚铁(FHC))和绿色锈蚀;但是,控制特定Fe(II)相形成的因素通常并不明确。这项研究检查了(ⅰ)各种无机氧阴离子(砷酸根,硼酸根,钼酸根,磷酸根,硅酸根和钨酸根)的影响;(ⅱ)天然有机物(柠檬酸根,草酸根,微生物细胞外聚合物[EPS]和腐殖质)的影响),以及(ⅲ)异铁还原菌的类型和数量,它们对铁云母进行生物还原并形成含Fe(II)的次级矿化产物。生物还原动力学分为两个不同的Fe(II)生产概况。 “快速”的Fe(II)生产动力学[19-24 mM Fe(II)d〜(-1))伴随着磁铁矿和FHC的形成,这些磁铁矿和FHC在未经修正的对照中以及在用硼酸盐,草酸盐,结冷性聚苯乙烯或小马湖富里酸或细胞数低。用砷酸根,柠檬酸根,钼酸根,磷酸根,硅酸根,钨酸根,腐烂希瓦氏菌CN32衍生的EPS或衍生自陆生植物材料或具有“高”细胞数的腐殖质的系统进行修订,显示出相对较慢的Fe(II)生产动力学(1.8-4.0 mM Fe(II)d〜(-1))和生铁锈的形成。结果与概念模型一致,在该模型中,更牢固结合的阴离子的竞争性吸附阻止细菌细胞进入,并减少电子穿梭化合物进入氧化铁表面的位点,从而限制了生物还原的速率。

著录项

  • 来源
    《Environmental Science & Technology》 |2010年第12期|P.4570-4576|共7页
  • 作者单位

    Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439-4843;

    rnDepartment of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242-1527;

    rnDepartment of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242-1527;

    rnBiosciences Division, Argonne National Laboratory, Argonne, Illinois 60439-4843;

    rnBiosciences Division, Argonne National Laboratory, Argonne, Illinois 60439-4843;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号