...
首页> 外文期刊>Environmental Science & Technology >Microbial Architecture of Environmental Sulfur Processes: A Novel Syntrophic Sulfur-Metabolizing Consortia
【24h】

Microbial Architecture of Environmental Sulfur Processes: A Novel Syntrophic Sulfur-Metabolizing Consortia

机译:环境硫过程的微生物结构:一个新的同养性硫代谢联盟。

获取原文
获取原文并翻译 | 示例
           

摘要

Microbial oxidation of sulfur-rich mining waste materials drives acid mine drainage (AMD) and affects the global sulfur biogeochemical cycle. The generation of AMD is a complex, dynamic process that proceeds via multiple reaction pathways. The role of natural consortia of microbes in AMD generation, however, has received very little attention despite their widespread occurrence in mining environments. Through a combination of geochemical experimentation and modeling, scanning transmission X-ray microscopy, and fluorescent in situ hybridization, we show a novel interdependent metabolic arrangement of two ubiquitous and abundant AMD bacteria: chemoautotrophic sulfur-oxidizing Acidithiobacillus sp. and heterotrophic Acidiphilium sp. Highly reminiscent of anaerobic methane oxidation (AOM) consortia, these bacteria are spatially segregated within a planktonic macrostructure of extracellular polymeric substance in which they syntrophically couple sulfur oxidation and reduction reactions in a mutually beneficial arrangement that regenerates their respective sulfur substrates. As discussed here, the geochemical impacts of microbial metabolism are linked to the consortial organization and development of the pod structure, which affects cell-cell interactions and interactions with the surrounding geochemical microenvironment. If these pods are widespread in mine waters, echoing the now widespread discovery of AOM consortia, then AMD-driven CO_2 atmospheric fluxes from H_2SO_4 carbonate weathering could be reduced by as much as 26 TgC/yr.rnThis novel sulfur consortial discovery indicates that organized metabolically linked microbial partnerships are likely widespread and more significant in global elemental cycling than previously considered.
机译:富硫采矿废料的微生物氧化驱动酸性矿山排水(AMD)并影响全球硫生物地球化学循环。 AMD的产生是一个复杂的动态过程,它通过多种反应途径进行。尽管在采矿环境中广泛存在,微生物的自然社团在AMD一代中的作用却很少受到关注。通过地球化学实验和建模,扫描透射X射线显微镜和荧光原位杂交的组合,我们显示了两种普遍存在且丰富的AMD细菌的新的相互依存的代谢排列:化学自养硫氧化酸性硫杆菌。和异养嗜酸菌这些细菌高度让人联想到厌氧甲烷氧化(AOM),这些细菌在空间上隔离在细胞外聚合物的浮游宏观结构中,它们以互利的方式同化硫氧化和还原反应,从而使各自的硫底物再生。如此处所述,微生物新陈代谢的地球化学影响与豆荚结构的联合体组织和发育有关,这会影响细胞间相互作用以及与周围地球化学微环境的相互作用。如果这些豆荚广泛分布在矿井水中,与AOM财团的发现相呼应,那么由H_2SO_4碳酸盐风化引起的AMD驱动的CO_2大气通量可能会减少26 TgC / yr。与微生物相关的伙伴关系在全球元素循环中可能比以前认为的更为广泛和重要。

著录项

  • 来源
    《Environmental Science & Technology》 |2009年第23期|8781-8786|共6页
  • 作者单位

    School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, L8S 4K1 Canada;

    Department of Earth Sciences, University of Western Ontario, London, Ontario N6A 5B7, Canada;

    Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, Canadian;

    Light Source, Inc., University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C6, Canada, and Brockhouse Institute for Materials Research;

    Light Source, Inc., University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C6, Canada, and Brockhouse Institute for Materials Research;

    Light Source, Inc., University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C6, Canada, and Brockhouse Institute for Materials Research Departmentof Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada;

    Departmentof Chemistry, McMaster University, Hamilton, Ontario L8S 4M1, Canada;

    School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, L8S 4K1 Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号