...
首页> 外文期刊>Environmental Science & Technology >Oxidation of ferrocyanide by birnessite
【24h】

Oxidation of ferrocyanide by birnessite

机译:水钠锰矿氧化亚铁氰化物

获取原文
获取原文并翻译 | 示例
           

摘要

The Fe-CN complexes ferrocyanide, [Fe-II(CN)(6)](4-), and ferricyanide, [Fe-III(CN)(6)](3-), which are contaminants in soil and groundwater, form a redox couple, [Fe-II(CN)(6)](4-) reversible arrow [Fe-III(CN)(6)](3-) + e(-), E-H = 356 mV. We studied the oxidation of [Fe-II(CN)(6)](4-) by birnessite, delta-(MnO2)-O-IV, in batch experiments as influenced by [Fe-II(CN)(6)](4-) concentration, pH, and reaction time. Additionally, stopped-flow experiments were carried out at five temperatures (10-30 degreesC) and four pH values (pH 4.1-5.3). In the batch experiments, [Fe-II(CN)(6)](4-) was completely oxidized to [Fe-III(CN)(6)](3-), and oxidation did neither depend on time for t > 2 min, nor on concentration (0.12-0.47 mM), nor on pH (pH 3.3-9.9). Lasting adsorption of Fe-CN complexes on the birnessite surface or precipitation of manganese ferricyanide were not detected. Manganous ions resulting from the reductive dissolution of birnessite did not precipitate as manganese oxide because an identical decrease of Mn solution concentrations was observed under air and under a N-2 atmosphere. Two processes were detected by the stopped-flow experiments. The first rapid one with an activation energy of approximately 60 kJ mol(-1) was attributed to short-term adsorption and simultaneous oxidation of [Fe-II(CN)(6)](4-) on the birnessite surface. The second slower process with an activation energy of approximately 20 kJ mol(-1) was attributed most probably to diffusion of the reaction product Mn2+ into the interior of the birnessite, which creates fresh reaction sites at the outer surface.
机译:Fe-CN与铁氰化物[Fe-II(CN)(6)](4-)和铁氰化物[Fe-III(CN)(6)](3-)形成复合物,它们是土壤和地下水中的污染物,形成氧化还原对,[Fe-II(CN)(6)](4-)可逆箭头[Fe-III(CN)(6)](3-)+ e(-),EH = 356 mV。在[Fe-II(CN)(6)]的影响下,我们通过分批实验研究了水钠锰矿δ-(MnO2)-O-IV对[Fe-II(CN)(6)](4-)的氧化。 (4-)浓度,pH和反应时间。另外,在五个温度(10-30℃)和四个pH值(pH 4.1-5.3)下进行了停流实验。在分批实验中,[Fe-II(CN)(6)](4-)被完全氧化为[Fe-III(CN)(6)](3-),并且氧化都不取决于时间t> 2分钟,也不在浓度(0.12-0.47 mM)上,也不在pH值(pH 3.3-9.9)上。未检测到铁-CN配合物在水钠锰矿表面上的持久吸附或锰铁氰化物的沉淀。由于水钠锰矿的还原性溶解而产生的锰离子没有以氧化锰的形式沉淀,因为在空气和N-2气氛下观察到锰溶液浓度的降低。停流实验检测到两个过程。活化能约为60 kJ mol(-1)的第一个快速分子归因于短期吸附并同时在水钠锰矿表面上氧化[Fe-II(CN)(6)](4-)。第二个较慢的过程,其活化能约为20 kJ mol(-1),最有可能是由于反应产物Mn2 +扩散到水钠锰矿内部,从而在外表面产生了新的反应部位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号