首页> 外文期刊>Environmental Science & Technology >Environmental Photochemistry on Semiconductor Surfaces: Photosensitized Degradation of a Textile Azo Dye, Acid Orange 7, on TiO_2 Particles Using Visible Light
【24h】

Environmental Photochemistry on Semiconductor Surfaces: Photosensitized Degradation of a Textile Azo Dye, Acid Orange 7, on TiO_2 Particles Using Visible Light

机译:半导体表面上的环境光化学:可见光在TiO_2颗粒上对纺织品偶氮染料酸性橙7的光敏降解

获取原文
获取原文并翻译 | 示例
           

摘要

Photosensitized degradation of a textile azo dye, Acid Orange 7, has been carried out on TiO_2 particles using visible light. Mechanistic details of the dye degradation have been elucidated using diffuse reflectance absorption and FTIR techniques. Degradation does not occur on Al_2O_3 surface or in the absence of oxygen. The dependence of the dye degradation rate on the surface coverage shows the participation of excited dye and TiO_2 semiconductor in the surface photochemical process. Diffuse reflectance laser flash photolysis confirms the charge injection from the excited dye molecule into the conduction band of the semiconductor as the primary mechanism for producing oxidized dye radical. The surface-adsorbed oxygen plays an important role in scavenging photogenerated electrons, thus preventing the recombination between the oxidized dye radical and the photoinjected electrons. Diffuse reflectance FTIR was used to make a tentative identification of reaction intermediates and end products of dye degradation. The intermediates, 1,2-naphthoquinone and phthalic acid, have been identified during the course of degradation. Though less explored in pho-tocatalysis, the photosensitization approach could be an excellent choice for the degradation of colored pollutants using visible light.
机译:纺织品偶氮染料酸性橙7的光敏降解已使用可见光在TiO_2颗粒上进行。使用漫反射吸收和FTIR技术已经阐明了染料降解的机理细节。在Al_2O_3表面或没有氧气的情况下不会发生降解。染料降解速率对表面覆盖率的依赖性表明受激发的染料和TiO_2半导体参与了表面光化学过程。漫反射激光闪光光解证实了从激发的染料分子向半导体的导带注入的电荷,这是产生氧化染料自由基的主要机理。表面吸附的氧气在清除光生电子方面起着重要作用,从而防止了氧化染料自由基与光注入电子之间的复合。漫反射FTIR用于初步鉴定反应中间体和染料降解的最终产物。在降解过程中已鉴定出中间体1,2-萘醌和邻苯二甲酸。尽管在光催化方面探索较少,但是光敏化方法可能是使用可见光降解有色污染物的绝佳选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号