...
首页> 外文期刊>Estuaries and Coasts >A Numerical Simulation of Residual Circulation in Tampa Bay. Part II: Lagrangian Residence Time
【24h】

A Numerical Simulation of Residual Circulation in Tampa Bay. Part II: Lagrangian Residence Time

机译:坦帕湾残留环流的数值模拟。第二部分:拉格朗日居住时间

获取原文
获取原文并翻译 | 示例
           

摘要

Lagrangian retention and flushing are examined by advecting neutrally buoyant point particles within a circulation field generated by a numerical ocean model of Tampa Bay. Large temporal variations in Lagrangian residence time are found under realistic changes in boundary conditions. Two 90-day time periods are examined. The first (P1) is characterized by low freshwater inflow and weak baroclinic circulation. The second (P2) has high freshwater inflow and strong baroclinic circulation. At the beginning of both time periods, 686,400 particles are released uniformly throughout the bay. Issues relating to particle distribution and flushing are examined at three different spatial scales: (1) at the scale of the entire bay, (2) the four major regions within the bay, and (3) at the scale of individual model grid cells. Two simple theoretical models for the particle number over time, N(t), are fit to the particle counts from the ocean model. The theoretical models are shown to represent N(t) reasonably well when considering the entire bay, allowing for straightforward calculation of baywide residence times: 156 days for P1 and 36 days for P2. However, the accuracy of these simple models decreases with decreasing spatial scale. This is likely due to the fact that particles may exit, reenter, or redistribute from one region to another in any sequence. The smaller the domain under consideration, the more this exchange process dominates. Therefore, definitions of residence time need to be modified for “non-local” situations. After choosing a reasonable definition, and removal of the tidal and synoptic signals, the residence times at each grid cell in P1 is found to vary spatially from a few days to 90 days, the limit of the calculation, with an average residence time of 53 days. For P2, the overall spatial pattern is more homogeneous, and the residence times have an average value of 26 days.
机译:通过对坦帕湾数值海洋模型产生的环流场内中性浮力点进行平流,检查了拉格朗日滞留和冲洗。在边界条件的实际变化下,发现了拉格朗日停留时间的较大时间变化。检查了两个90天的时间段。第一类(P1)的特点是淡水流入量少,斜压环流弱。第二个(P2)具有高淡水流入量和强斜压循环。在这两个时间段的开始,整个海湾均匀地释放了686,400个颗粒。在三个不同的空间尺度上研究了与粒子分布和冲洗有关的问题:(1)整个海湾的尺度;(2)海湾内的四个主要区域;(3)单个模型网格单元的尺度。随时间变化的两个简单的理论模型N(t)适用于海洋模型中的粒子数。当考虑整个海湾时,理论模型显示可以很好地表示N(t),从而可以直接计算整个海湾的停留时间:P1为156天,P2为36天。但是,这些简单模型的准确性会随着空间比例的减小而降低。这很可能是由于以下事实:粒子可能以任何顺序从一个区域离开,重新进入或重新分布到另一个区域。所考虑的域越小,交换过程越占主导地位。因此,对于“非本地”情况,需要修改停留时间的定义。选择合理的定义并消除潮汐和天气信号后,发现P1中每个网格单元的停留时间在空间上从几天到90天不等,这是计算的极限,平均停留时间为53天。对于P2,总体空间格局更为均一,并且停留时间的平均值为26天。

著录项

  • 来源
    《Estuaries and Coasts》 |2008年第5期|815-827|共13页
  • 作者单位

    Ocean Monitoring and Prediction Laboratory College of Marine Science University of South Florida St. Petersburg FL 33701 USA;

    Ocean Monitoring and Prediction Laboratory College of Marine Science University of South Florida St. Petersburg FL 33701 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Estuarine circulation; Residence time; Flushing; Lagrangian;

    机译:河口循环;停留时间;冲洗;拉格朗日;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号