...
首页> 外文期刊>European journal of navigation >Operational considerations for improved accuracy with an IOC galileo constellation
【24h】

Operational considerations for improved accuracy with an IOC galileo constellation

机译:使用IOC伽利略星座以提高准确性的操作注意事项

获取原文
获取原文并翻译 | 示例
           

摘要

When Galileo achieves its Initial Operating Capability (IOC), there will be 18 satellites in orbit, broadcasting navigation messages around the world. This set of satellites will achieve 100% coverage, given the three plane, six satellites per plane geometry. During the IOC phase, the Dilution of Precision (DOP) is not yet ideal and indeed may have severe spikes several times during the day globally. Navigation accuracy during the IOC phase of Galileo is a function of many factors. This paper focuses on two components of navigation accuracy that the Galileo Control Center (GCC) can manipulate in operations to improve overall accuracy for the users of the system. Using the fundamental error equation, this paper shows that tuning operations at the GCC can reduce navigation errors from the IOC constellation on a global basis by selectively timing uploads of the orbital ephemeris and clock state predictions. The GCC must refresh the satellite orbital position (ephemeris) and clock state predictions on a regular basis to keep the receiver's calculated positions accurate. These predictions are sent to the user's receiver, where it uses this data to calculate its position and velocity. Understanding how these predictions affect a user's accuracy and understanding how to manipulate these predictions will aid the GCC in delivering a lower average navigation error during the Galileo IOC period. Even with very accurate clocks, individual satellite clock state predictions must be uploaded to the Galileo satellites on a regular basis - to keep the Galileo system accuracy at a desired level. For the same reason, the orbital ephemeris predictions must also be updated regularly. Since both of these data items are predictions, errors in these predictions result in errors at the user's receiver. Ideally, these orbit and clock predictions would be updated continuously, but that cannot be achieved operationally. This paper will show the results of manipulating the GCC operations upload tempo to deliver better navigation accuracy performance for Galileo. Benefits of implementing these results include a smaller average navigation error for users of the IOC system, leading to increased user desire for system use. Additionally, early application developers will more readily adopt the system over GPS and more reliable safety-of-life use of Galileo may result.
机译:当伽利略实现其初始作战能力(IOC)时,轨道上将有18颗卫星,在全球范围内广播导航消息。给定三个平面,每个平面几何六颗卫星,这组卫星将实现100%的覆盖。在IOC阶段,精确度稀释(DOP)尚不理想,并且实际上在全球范围内每天可能多次出现严重的峰值。伽利略的IOC阶段的导航精度是许多因素的函数。本文着重介绍伽利略控制中心(GCC)可以在操作中操纵的导航精度的两个组成部分,以提高系统用户的总体精度。使用基本误差方程,本文表明,通过选择性地定时上传星历和时钟状态预测,GCC的调谐操作可以在全球范围内减少来自IOC星座的导航误差。 GCC必须定期刷新卫星轨道位置(星历)和时钟状态预测,以保持接收器的计算位置准确。这些预测将发送到用户的接收器,在接收器中,用户将使用此数据来计算其位置和速度。了解这些预测如何影响用户的准确性以及了解如何操纵这些预测将有助于GCC在Galileo IOC期间提供较低的平均导航误差。即使使用非常精确的时钟,也必须定期将单个卫星时钟状态预测上载到Galileo卫星,以使Galileo系统的精度保持在所需水平。出于同样的原因,还必须定期更新轨道星历表预测。由于这两个数据项都是预测,因此这些预测中的错误会导致用户接收器出现错误。理想情况下,这些轨道和时钟预测将连续更新,但是在操作上无法实现。本文将展示操纵GCC操作上载速度以为Galileo提供更好的导航精度性能的结果。实施这些结果的好处包括IOC系统用户的平均导航误差较小,从而导致用户对系统使用的需求增加。此外,早期的应用程序开发人员将更容易在GPS上采用该系统,从而可能会更可靠地使用Galileo进行生命安全。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号