...
首页> 外文期刊>Experimental Astronomy >PheniX: a new vision for the hard X-ray sky
【24h】

PheniX: a new vision for the hard X-ray sky

机译:PheniX:硬X射线天空的新视野

获取原文
           

摘要

We are proposing a mission devoted to high energy X-ray astronomy that is based on a focusing telescope operating in the 1–200 keV energy range but optimized for the hard X-ray range. The main scientific topics concern: Physics of compact objects: The proximity of compact objects provides a unique laboratory to study matter and radiation in extreme conditions of temperature and density in strong gravitational environment. The emission of high energy photons from these objects is far from being understood. The unprecedented sensitivity in the high energy domain will allow a precise determination of the non-thermal processes at work in the vicinity of compact objects. The full 1–200 keV energy coverage will be ideal to disentangle the emission processes produced in the spacetime regions most affected by strong-gravity, as well as the physical links: disk–thermal emission–iron line–comptonisation–reflection–non-thermal emission–jets. Neutron stars–magnetic field–cyclotron lines: Time resolved spectroscopy (and polarimetry) at ultra-high sensitivity of AXP, milliseconds pulsars and magnetars will give new tools to study the role of the synchrotron processes at work in these objects. Cyclotron lines–direct measurement of magnetic filed–equation of state constraints–short bursts–giant flares could all be studied with great details. AGN: The large sensitivity improvement will provide detailed spectral properties of the high energy emission of AGN’s. This will give a fresh look to the connection between accretion and jet emission and will provide a new understanding of the physical processes at work. Detection of high-redshift active nuclei in this energy range will allow to introduce an evolutionary aspect to high-energy studies of AGN, probing directly the origin of the Cosmic X-ray Background also in the non-thermal range (> 20 keV). Element formation–Supernovae: The energy resolution achievable for this mission (<0.5 keV) and a large high energy effective area are ideally suited for the 44Ti line study (68 and 78 keV). This radioactive nuclei emission will give an estimate of their quantities and speed in their environment. In addition the study of the spatial structure and spectral emission of SNR will advance our knowledge of the dynamics of supernovae explosions, of particles acceleration mechanisms and how the elements are released in the interstellar medium. Instrumental design: The progress of X-ray focusing optics techniques allows a major step in the instrumental design: the collecting area becomes independent of the detection area. This drastically reduces the instrumental background and will open a new era. The optics will be based on depth-graded multi-layer mirrors in a Wolter I configuration. To obtain a significant effective area in the hundred of keV range a focal length in the 40–50 meters range (attainable with a deployable mast) is needed. In addition such a mission could benefit from recent progress made on mirror coating. We propose to cover the 1–200 keV energy range with a single detector, a double-sided Germanium strip detector operating at 80 K. The main features will be: (a) good energy resolution (.150 keV at 5 keV and <.5 keV at 100 keV), (b) 3 dimensional event localization with a low number of electronic chains, (c) background rejection by the 3D localization, (d) polarisation capabilities in the Compton regime.
机译:我们正在提议一项致力于高能X射线天文学的任务,该任务基于在1–200 keV能量范围内运行但针对硬X射线范围进行了优化的聚焦望远镜。主要的科学主题涉及:紧凑物体的物理:紧凑物体的接近性提供了一个独特的实验室,可以在强重力环境中的温度和密度的极端条件下研究物质和辐射。从这些物体发出的高能光子还远远不能被理解。高能域中空前的灵敏度将允许精确确定紧凑物体附近工作中的非热过程。完整的1–200 keV能量覆盖范围将是理清受重力影响最大的时空区域以及物理链接(磁盘,热辐射,铁线,压缩,反射,非热)产生的排放过程的理想选择排放喷气机。中子星-磁场-回旋加速器线:AXP,毫秒脉冲星和磁星在超高灵敏度下的时间分辨光谱法(和极化法)将为研究同步加速器在这些物体中的作用提供新的工具。回旋加速器线–磁场的直接测量–状态约束方程–短脉冲爆发–耀斑都可以进行详细研究。 AGN:灵敏度的大幅提高将为AGN的高能发射提供详细的光谱特性。这将使吸积与射流排放之间的联系焕然一新,并使人们对工作中的物理过程有了新的认识。在此能量范围内检测高红移活性原子核将为AGN的高能量研究引入一个进化方面,也可在非热范围(> 20 keV)中直接探测宇宙X射线背景的起源。元素形成-超新星:此任务可实现的能量分辨率(<0.5 keV)和较大的高能量有效面积非常适合44Ti线研究(68和78 keV)。这种放射性核发射将估算出它们在环境中的数量和速度。此外,对SNR的空间结构和光谱发射的研究将使我们了解超新星爆炸的动力学,粒子加速机制以及星际介质中元素的释放方式。仪器设计:X射线聚焦光学技术的进步使仪器设计迈出了重要一步:收集区域变得独立于检测区域。这大大降低了乐器的背景,将开启一个新时代。光学器件将基于Wolter I配置中的深度渐变多层反射镜。为了在百keV范围内获得显着的有效面积,需要40–50米范围内的焦距(通过可展开的桅杆可达到)。另外,这样的任务可以受益于最近在镜面涂层方面取得的进展。我们建议使用一个探测器,一个工作在80 K的双面锗带状探测器覆盖1–200 keV的能量范围。主要特征是:(a)良好的能量分辨率(在5 keV时为.150 keV,<。 100 keV时为5 keV),(b)具有少量电子链的3维事件定位,(c)3D定位的背景抑制,(d)康普顿体系中的极化能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号