首页> 外文期刊>Finite elements in analysis & design >Multiphysics simulation of phase field interface development and geomechanical deformation in radio frequency heating of oil shale
【24h】

Multiphysics simulation of phase field interface development and geomechanical deformation in radio frequency heating of oil shale

机译:电油页岩射频加热中相田界面开发与地质力学变形的多发性仿真

获取原文
获取原文并翻译 | 示例
           

摘要

A novel multiphysics finite element framework, developed to numerically model in-situ pyrolysis of oil shale by radio frequency heating in a two-dimensional (2D) domain, is extended to include deformation analysis of the target formation and adjacent regions as a result of dielectric heating. This framework is constructed by explicitly coupling equations describing thermal, phase field front tracking, mechanical deformation and electromagnetics (TPME) to track the conversion of high yield oil shale to liquid oil. The finite element method is used to model heat generation by the conversion of electromagnetic energy in the formation then the solid-liquid conversion interface is tracked by the Allen-Cahn phase field method. The objective of this work is to analyze the evolution of the conversion interface and the subsequent mechanical deformation of the target formation by evaluating disparate geologic model descriptions to capture the anticipated subsurface behavior. These geologic models possess variations in complexity so that the appropriate level of detail in the geological model description can be assessed for further TPME simulation studies of radio frequency heating. The evaluated geologic models include those which are comprised of: heterogeneous or homogeneous high yield kerogen-rich properties in addition to the inclusion or omission of under- and overburden surrounding the target formation at varying electrode separation distances and applied electromagnetic frequencies. Parameterization of the numerical model was performed following characteristics of the Green River oil shale. Results show the variation in conversion interface of solid kerogen to liquid oil by way of interface arrival times at domain boundaries as well as the extent of formation deformation under the disparate geological model descriptions. Based on these results oil shale conversion timelines are compared and highlight the need to include mechanical deformation analysis of the target formation, including a kerogen-poor under- and overburden, in the numerical modeling of radio frequency heating as a process of oil shale in-situ pyrolysis.
机译:一种新的多体化有限元框架,在二维(2D)域中通过射频加热开发的油页岩原位模型,扩展到包括介质的目标形成和相邻区域的变形分析加热。该框架是通过明确地耦合描述热,相位现场前跟踪,机械变形和电磁(TPME)的方程来构造,以跟踪高产油页面对液体油的转化。有限元方法用于通过在地层中转换电磁能量的模拟发热,然后通过艾伦-CAHN相现场方法跟踪固液转换界面。这项工作的目的是通过评估不同的地质模型描述来分析转换界面的演变和随后的目标形成的机械变形,以捕获预期的地下行为。这些地质模型具有复杂性的变化,因此可以评估地质模型描述中适当的细节水平,可以评估射频加热的进一步TPME仿真研究。除了在不同电极分离距离和施加的电磁频率下围绕靶形成的覆盖物之外,评价的地质模型包括:除了包含或遗传的围绕和覆盖层的覆盖层之外,其包括:非均相或均匀的高产能富含性能。数值模型的参数化进行了绿河油页岩的特点。结果表明,通过域边界的界面到达时间以及不同地质模型描述下的形成变形程度,结果显示了固体性能转化界面与液体油的变化。基于这些结果,对油页岩转换时间表进行了比较,突出了包括目标形成的机械变形分析的需要,包括射频加热的数值模拟作为油页岩过程的数值模拟中的角膜覆盖率。原位热解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号