...
首页> 外文期刊>Fuel >Synchrotron X-ray tomographic characterization of microstructural evolution in coal due to supercritical CO_2 injection at in-situ conditions
【24h】

Synchrotron X-ray tomographic characterization of microstructural evolution in coal due to supercritical CO_2 injection at in-situ conditions

机译:现场条件下超临界CO_2注入导致煤的微观结构演变的同步X射线断层扫描表征

获取原文
获取原文并翻译 | 示例
           

摘要

Microstructural evolution in coal due to CO2 injection directly influences the gas transport and storage properties of coal during CO2 sequestration in deep coal seams. Using synchrotron X-ray tomography, we performed CT imaging under simulated reservoir conditions with a novel X-ray transparent core holder and investigated the time-dependent evolution of 3-D microstructures of an anthracite coal with 1.37% moisture as-received interacted with supercritical CO2 (ScCO2). Three sets of CT scans were taken: (1) coal was subjected to 10 MPa confining pressure before exposed to ScCO2, (2) coal was subjected to 10 MPa confining pressure and after 7 h of exposure to ScCO2, and (3) coal was subjected to 10 MPa confining pressure and after 53 h of exposure to ScCO2. When ScCO2 interacts with coal, complex physico-chemical reactions occur, changing coal microstructures in multiple ways and resulting in significant permeability changes. After 7 h ScCO2 injection, we directly observed the pre-existing microfracture closure, which was attributed to coal swelling. A significant permeability reduction was measured from 3.0 to 0.24 mu D with up to 26 h CO2 injection. With increasing injection duration, interestingly, we observed the wormhole growth in coal due to hydrocarbon mobilization and mineral dissolution, which accordingly caused a permeability rebound to 1.2 mu D after 53 h CO2 injection. Coal swelling occurred readily upon ScCO2 injection but hydrocarbon mobilization and mineral dissolution were delayed to affect the permeability probably due to the slower reaction kinetics. This study suggests that ScCO2 injection has the potential to improve the permeability and enhance the coalbed methane recovery due to the effects of hydrocarbon mobilization and mineral dissolution.
机译:注入CO2导致煤的微观结构演变直接影响深部煤层中CO2固存过程中煤的气体输运和储存特性。使用同步加速器X射线断层扫描,我们在模拟储层条件下使用新型X射线透明堆芯支架进行了CT成像,并研究了水分含量为1.37%的无烟煤3-D微观结构随超临界相互作用而随时间变化的过程。二氧化碳(ScCO2)。进行了三组CT扫描:(1)煤在暴露于ScCO2之前经受10 MPa的围压,(2)煤经受10 MPa围压并且在暴露于ScCO2 7 h之后,(3)煤经经受10 MPa的围压,并暴露于ScCO2 53 h后。当ScCO2与煤相互作用时,会发生复杂的物理化学反应,从而以多种方式改变煤的微观结构,并导致显着的渗透率变化。注入ScCO2 7 h后,我们直接观察到先前存在的微裂缝闭合,这归因于煤溶胀。注入最多26 h的二氧化碳后,渗透率从3.0降低到0.24μD。随着注入持续时间的增加,有趣的是,我们观察到由于碳氢化合物的移动和矿物的溶解,煤中的虫洞不断增长,因此在注入53 h CO2之后,渗透率反弹至1.2μD。注入ScCO2时很容易发生煤溶胀,但是由于反应动力学较慢,烃的迁移和矿物溶解被延迟以影响渗透率。这项研究表明,由于碳氢化合物的动员和矿物溶解的影响,注入ScCO2具有提高渗透率和提高煤层气采收率的潜力。

著录项

  • 来源
    《Fuel》 |2019年第1期|115696.1-115696.8|共8页
  • 作者单位

    Monash Univ, Dept Civil Engn, Deep Earth Energy Lab, Bldg 60, Melbourne, Vic 3800, Australia;

    Monash Univ, Dept Civil Engn, Deep Earth Energy Lab, Bldg 60, Melbourne, Vic 3800, Australia;

    Tsinghua Univ, Dept Hydraul Engn, Beijing 100084, Peoples R China;

    Monash Univ, Dept Civil Engn, Deep Earth Energy Lab, Bldg 60, Melbourne, Vic 3800, Australia|Univ Melbourne, Dept Infrastruct Engn, Bldg 176, Melbourne, Vic 3010, Australia;

    Monash Univ, Dept Civil Engn, Deep Earth Energy Lab, Bldg 60, Melbourne, Vic 3800, Australia;

    Henan Polytech Univ, Sch Energy Sci & Engn, Jiaozuo 454000, Henan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    X-ray CT; Synchrotron; CO2 sequestration; Coal swelling; Mineral dissolution; Hydrocarbon mobilization;

    机译:X射线CT;同步;CO2封存;煤肿胀;矿物溶解;碳氢化合物动员;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号