...
首页> 外文期刊>Fuel >A reduced and robust reaction mechanism for toluene and decalin oxidation with polycyclic aromatic hydrocarbon predictions
【24h】

A reduced and robust reaction mechanism for toluene and decalin oxidation with polycyclic aromatic hydrocarbon predictions

机译:预测多环芳烃对甲苯和十氢化萘氧化反应的减少且鲁棒的反应机理

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, a reduced toluene-decalin reaction mechanism containing 108 species and 566 reactions was proposed for computational fluid dynamics (CFD) simulations and polycyclic aromatic hydrocarbon (PAH) formation predictions in combustion engines. The present mechanism was validated with the available literature data including ignition delay time (IDT) determined in shock tubes and rapid compression machines (RCM), species mole fractions measured in premixed flames and jet stirred reactors (JSR), and laminar flame speeds. Moreover, a sensitivity analysis was performed on toluene and decalin flames to further investigate the main formation pathways of four representative PAHs: benzene (A(1)), naphthalene (A(2)), phenanthrene (A(3)) and pyrene (A(4)). In general, the simulation results exhibited a reasonable agreement with the experimental data. The negative temperature coefficient (NTC) behaviors of decalin IDTs were accurately reproduced by the proposed mechanism. The PAH species concentrations were also well captured for ethylene and benzene flames. The sensitivity analysis results indicated that the main formation reactions for PAHs have a strong link with ring structures. The decompositions of toluene and decalin primarily contributed to the formation of A(1). For toluene, A(2) was formed by the reactions A(1)- + C4H3 = A(2) and IC4H5 + A(1) = A(2) + H-2 + H, while for decalin, the self-combination reaction of C5H5 became the main pathway. In addition, the reactions of the aromatic molecules and radicals significantly promoted the formation of A(3) and A(4) for both toluene and decalin.
机译:在这项工作中,提出了一种还原的甲苯-十氢萘反应机理,该机理包含108个物种和566个反应,用于内燃机的计算流体动力学(CFD)模拟和多环芳烃(PAH)形成预测。本机制已通过可用的文献数据验证,包括在冲击管和快速压缩机(RCM)中确定的点火延迟时间(IDT),在预混火焰和喷射搅拌反应器(JSR)中测量的物质摩尔分数以及层流火焰速度。此外,对甲苯和十氢化萘火焰进行了敏感性分析,以进一步研究四种代表性PAH的主要形成途径:苯(A(1)),萘(A(2)),菲(A(3))和pyr( A(4))。通常,仿真结果与实验数据显示出合理的一致性。十氢化萘IDTs的负温度系数(NTC)行为可以通过所提出的机制准确地再现。对于乙烯和苯火焰,PAH种类的浓度也能很好地捕获。敏感性分析结果表明,多环芳烃的主要形成反应与环结构密切相关。甲苯和十氢化萘的分解主要促进了A(1)的形成。对于甲苯,A(2)是通过反应A(1)-+ C4H3 = A(2)和IC4H5 + A(1)= A(2)+ H-2 + H形成的,而十氢化萘则是自C5H5的结合反应成为主要途径。此外,芳族分子与自由基的反应显着促进了甲苯和十氢化萘的A(3)和A(4)的形成。

著录项

  • 来源
    《Fuel》 |2020年第1期|116233.1-116233.14|共14页
  • 作者单位

    Beihang Univ Sch Energy & Power Engn Beijing 100191 Peoples R China|Natl Univ Singapore Dept Mech Engn 9 Engn Dr 1 Singapore 117576 Singapore;

    Natl Univ Singapore Dept Mech Engn 9 Engn Dr 1 Singapore 117576 Singapore;

    Beihang Univ Sch Energy & Power Engn Beijing 100191 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Kinetic mechanism; Decalin; Toluene; PAHs formation; NTC behavior;

    机译:动力学机理;十氢化萘;甲苯;多环芳烃的形成;NTC行为;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号