...
首页> 外文期刊>Fuel >Slip length of methane flow under shale reservoir conditions: Effect of pore size and pressure
【24h】

Slip length of methane flow under shale reservoir conditions: Effect of pore size and pressure

机译:页岩储层条件下甲烷流的滑移长度:孔径和压力的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The conventional hydrodynamic equations (Navier-Stokes, Hagen-Poiseuille equations and Darcy's law) are no longer applicable in shale gas recovery due to strong surface adsorption and slip flow effect on gas transport in nanopores. Understanding the shale gas transport behavior is important for reservoir evaluation and production optimization. Herein, we report a molecular simulation study of methane flow in organic nanopores under shale reservoir conditions (temperature: 300-450 K, pressure: 10-60 MPa), with pore sizes ranging from 2 to 20 nm. We use the grand-canonical Monte Carlo simulations to determine the methane content in nanopores. We analyze the density distribution using equilibrium molecular dynamics. The surface adsorption effect is almost negligible under high pressure (60 MPa) conditions on average density, while it plays an important role under low-pressure conditions. Finally, we use nonequilibrium molecular dynamics simulation to study the transport behavior of nano-confined methane molecules. We find that the pore size has a significant effect on the slip length under low pressure (10 MPa) conditions. In contrast, the slip length is almost constant under high-pressure conditions. Under most conditions, the slip length decreases with the increase of pressures. Such a trend is more obvious in small pores under high-temperature conditions. Our work should provide important insights into the quantification of slip length in shale reservoir conditions.
机译:由于强大的表面吸附和滑流对纳米孔中气体传输的影响,常规的流体动力学方程(Navier-Stokes,Hagen-Poiseuille方程和达西定律)不再适用于页岩气回收。了解页岩气的输送行为对于评估储层和优化生产非常重要。本文中,我们报告了在页岩储层条件(温度:300-450 K,压力:10-60 MPa)下,孔径在2至20 nm范围内的有机纳米孔中甲烷流的分子模拟研究。我们使用大经典的蒙特卡洛模拟来确定纳米孔中的甲烷含量。我们使用平衡分子动力学分析密度分布。在高压(60 MPa)条件下,平均密度的表面吸附作用几乎可以忽略不计,而在低压条件下,表面吸附作用起着重要作用。最后,我们使用非平衡分子动力学模拟研究了纳米级甲烷分子的传输行为。我们发现,在低压(10 MPa)条件下,孔径对滑移长度有很大影响。相反,滑移长度在高压条件下几乎恒定。在大多数情况下,滑移长度随压力的增加而减小。在高温条件下的小孔中,这种趋势更加明显。我们的工作应为页岩储层条件下滑动长度的量化提供重要的见识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号