...
首页> 外文期刊>Fuel >Capillary-condensation hysteresis in naturally-occurring nanoporous media
【24h】

Capillary-condensation hysteresis in naturally-occurring nanoporous media

机译:天然存在的纳米多孔介质中的毛细管凝结滞后

获取原文
获取原文并翻译 | 示例
           

摘要

Persistent uncertainties in understanding fluid phase behavior in natural nanoporous media, including shale rock, remain a significant challenge to fully utilizing tight geological formations as both globally significant sources of hydrocarbon fuels and repositories for greenhouse gas sequestration. By measuring isotherms of nbutane and n-pentane in kerogen-rich shale cores at temperatures from 4.9 to 65.6 degrees C, we show that shale nanopores can induce a phase transition known as capillary condensation upon adsorption or capillary evaporation upon desorption. For both adsorbates, capillary condensation and capillary evaporation took different paths, thus forming hysteresis loops that increased in size with increasing temperature. While isotherms of nbutane were expectedly reproducible, surprisingly those for n-pentane were not. This was due to irreversible kerogen swelling induced by the n-pentane. To further investigate this phenomenon, we measured scanning isotherms of n-pentane at 4.9 and 65.6 degrees C. Similar to the primary hysteresis loops, successive scanning measurements during adsorption resulted in different isotherm shapes, while those for desorption remained consistent. This implies differences in the physics governing adsorption and desorption, which may rely on the pore structure and fluid elasticity, respectively. These results comprise the first observations of hysteresis loop broadening at high temperatures, irreproducible hysteresis, and scanning isotherms during capillary condensation measurements in a natural nanoporous medium. By viewing these results in the context of the current hypotheses on capillary condensation derived from previous studies using synthetic nanopores, we conclude that new core analysis and reservoir modeling procedures must be developed to account for the irreproducible hysteresis at reservoir temperature.
机译:在理解天然纳米多孔介质(包括页岩)中的液相行为方面,存在不确定性,对于充分利用致密的地质构造作为全球重要的碳氢燃料来源和温室气体封存库而言,仍然是一项重大挑战。通过在4.9至65.6摄氏度的温度下测量富含干酪根的页岩岩心中正丁烷和正戊烷的等温线,我们显示出页岩纳米孔可以诱导相变,称为吸附时的毛细管冷凝或解吸时的毛细管蒸发。对于两种吸附物,毛细管冷凝和毛细管蒸发采用不同的路径,因此形成磁滞回线,磁滞回线的大小随温度的升高而增加。尽管正丁烷的等温线是可预期的,但令人惊讶的是正戊烷的等温线却不可。这是由于正戊烷引起的不可逆的干酪根膨胀。为了进一步研究此现象,我们在4.9和65.6摄氏度下测量了正戊烷的扫描等温线。与初级磁滞回线类似,吸附过程中的连续扫描测量结果会产生不同的等温线形状,而解吸的等温线则保持一致。这意味着控制吸附和解吸的物理差异,可能分别取决于孔隙结构和流体弹性。这些结果包括在天然纳米多孔介质中进行毛细管缩合测量时,高温下磁滞回线变宽,不可再现的磁滞和扫描等温线的首次观察。通过在有关使用合成纳米孔的先前研究得出的毛细管凝结的当前假设的背景下查看这些结果,我们得出结论,必须开发新的岩心分析和油藏建模程序,以解决油藏温度下不可再现的滞后现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号