...
首页> 外文期刊>Fuel >Computational analysis of premixed methane-air flame interacting with a solid wall or a hydrogen porous wall
【24h】

Computational analysis of premixed methane-air flame interacting with a solid wall or a hydrogen porous wall

机译:预混甲烷-空气火焰与固体壁或氢多孔壁相互作用的计算分析

获取原文
获取原文并翻译 | 示例
           

摘要

The process of flame-wall interaction for premixed methane-air flames is investigated by direct numerical simulation. The flames propagate towards an isothermal, chemically inert surface, consisting of either a solid impermeable wall (IW) material or a hydrogen-permeable wall (PW) material. With the PW, hydrogen seeps into the domain and participate as a secondary, non-premixed fuel. The skeletal methane-air chemical reaction kinetics mechanisms of Smooke and Giovangigli and DRM22 are used with the S3D code to study the major reactions controlling the flame-wall interactions (FWI). Initially, results of said mechanisms are compared to the complete GRI 3.0 scheme. The configurations are investigated for two temperatures, 600 K and 750 K, of the wall and the unburnt gas, and for initial equivalence ratios of 0.5, 1.0 and 1.5. Results for IW are similar to previous FWI studies. The flame quenches at the wall, with maximum heat release and wall heat flux occurring close to the quenching instance. For the PW cases, the flame quenches before reaching the wall. This is explained by the mutual effects of convective heat transfer away from the wall and flame due to permeation, a high concentration of hydrogen and high local fuel-to-oxidizer ratio, reduced temperature and reduced reaction heat release. The quenching definition and flame position are based on OH radicals concentration. The observed maximum wall heat flux is much lower than for IW, and occurs some time after quenching. A discussion about the quenching process indicates that a definition based on maximum wall heat flux is inappropriate.
机译:通过直接数值模拟研究了甲烷-空气预混火焰的火焰壁相互作用过程。火焰向等温化学惰性表面传播,该表面由固体不可渗透壁(IW)材料或氢可渗透壁(PW)材料组成。借助PW,氢渗入该区域,并作为二次非预混合燃料参与。 Smooke和Giovangigli的骨架甲烷-空气化学反应动力学机制以及DRM22与S3D代码一起使用,以研究控制火焰壁相互作用(FWI)的主要反应。最初,将所述机制的结果与完整的GRI 3.0方案进行比较。研究了壁和未燃烧气体的两种温度(600 K和750 K)以及初始当量比0.5、1.0和1.5的构型。 IW的结果与以前的FWI研究相似。火焰在壁处淬火,最大的热量释放和壁热通量在淬火实例附近发生。对于PW情况,火焰在到达壁之前先熄灭。这是由于渗透引起的对流传热与壁之间的相互影响以及火焰,高氢浓度和高局部燃料与氧化剂比,降低的温度以及减少的反应热释放之间的相互影响。淬火定义和火焰位置基于OH自由基浓度。观察到的最大壁热通量比IW低得多,并且发生在淬火后的一段时间。有关淬火过程的讨论表明,基于最大壁热通量的定义是不合适的。

著录项

  • 来源
    《Fuel》 |2020年第jul15期|117658.1-117658.16|共16页
  • 作者

  • 作者单位

    NTNU Norwegian Univ Sci & Technol Dept Energy & Proc Engn Kolbjorn Hejes Vei 1b NO-7491 Trondheim Norway;

    NTNU Norwegian Univ Sci & Technol Dept Energy & Proc Engn Kolbjorn Hejes Vei 1b NO-7491 Trondheim Norway|SINTEF Energy Res Trondheim Norway;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Impermeable wall; Permeable wall; S3D code; Head on quenching; Smooke and Giovangigli mechanism; DRM22 mechanism;

    机译:防渗墙;渗透墙S3D代码;进行淬火;烟和焦万吉利机制;DRM22机制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号