...
首页> 外文期刊>Fuel >Heat-sink enhancement of decalin and aviation kerosene prepared as nanofluids with palladium nanoparticles
【24h】

Heat-sink enhancement of decalin and aviation kerosene prepared as nanofluids with palladium nanoparticles

机译:钯纳米颗粒制备的纳米流体制备的萘烷和航空煤油的散热增强

获取原文
获取原文并翻译 | 示例
           

摘要

Three different kinds of palladium nanoparticles modified by octadecanethiol, octadecylamine, and mixture of them have been prepared, which are simply marked as Pd@S, Pd@N and Pd@S&N in turn. The nanoparticles are characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermo-gravimetric analysis (TGA). It follows that the average diameters of the nanoparticles are 1-3 nm. Pd@S shows noncrystalline structure, while Pd@N and Pd@S&N show face-center cubic (fcc) structure. These palladium nanoparticles can be well-dispersed in decalin, and then the nanofluids composed of decalin and palladium nanoparticles are prepared, which can be regarded as pseudohomoge-neous systems. The cracking of each nanofluid containing 500 ppm Pd is performed under supercritical conditions (3.5 MPa, 600-750 ℃) of decalin with a mass flow rate of 1 g/s in an electrically heated tube reactor which simulates a single passage in a practical heat exchanger. The cracking results indicate that these nanoparticles exhibit catalytic activity to a certain extent, and the activity of Pd@N nanoparticles is better than that of Pd@S or Pd@S&N. At 750 ℃, the conversion of decalin is raised from 70.31 wt% of thermal cracking to 73.21 wt% with the existence of Pd@S, while that raised to 80.54 wt% with Pd@S&N and even raised to 91.85 wt% with Pd@N. The heat sink of nanofluids is effectively enhanced, and the nanofluid containing Pd@N shows the highest value, which reaches 3.50 MJ/kg and is increased by 0.29 MJ/kg in comparison with the heat sink of thermal cracking at 750 ℃. The cracking of aviation kerosene containing Pd nanoparticles is then performed, the results of which confirm the feasibility of practical application of Pd nanoparticles to hydrocarbon fuels.
机译:制备了十八烷硫醇,十八烷基胺及其混合物改性的三种不同类型的钯纳米颗粒,分别简单地标记为Pd @ S,Pd @ N和Pd @ S&N。纳米粒子的特征在于X射线衍射(XRD),透射电子显微镜(TEM)和热重分析(TGA)。因此,纳米颗粒的平均直径为1-3nm。 Pd @ S显示为非晶结构,而Pd @ N和Pd @ S&N显示面心立方(fcc)结构。这些钯纳米颗粒可以很好地分散在十氢化萘中,然后制备由十氢化萘和钯纳米颗粒组成的纳米流体,可以认为是准同质体系。含有500 ppm Pd的每种纳米流体的裂解都是在十氢化萘的超临界条件下(3.5 MPa,600-750℃)在质量为1 g / s的电加热管反应器中进行的,该反应器模拟了实际加热中的单程通过交换器。裂解结果表明,这些纳米颗粒具有一定程度的催化活性,Pd @ N纳米颗粒的活性优于Pd @ S或Pd @ S&N。在750℃时,存在Pd @ S时,十氢化萘的转化率从热裂化的70.31 wt%提高到73.21 wt%,而在Pd @ S&N的情况下,十氢化萘的转化率提高到80.54 wt%,甚至在Pd @ S时提高到91.85 wt%。 N.与750℃的热裂解散热器相比,纳米流体的散热效果得到了增强,含Pd @ N的纳米流体的散热值最高,达到3.50 MJ / kg,增加了0.29 MJ / kg。然后进行含航空煤油的Pd纳米粒子的裂解,其结果证实了Pd纳米粒子在烃类燃料中实际应用的可行性。

著录项

  • 来源
    《Fuel》 |2014年第4期|149-156|共8页
  • 作者单位

    Department of Chemistry, Zhejiang University, Hangzhou 310027, China;

    Department of Chemistry, Zhejiang University, Hangzhou 310027, China;

    Department of Chemistry, Zhejiang University, Hangzhou 310027, China;

    Department of Chemistry, Zhejiang University, Hangzhou 310027, China;

    Department of Chemistry, Zhejiang University, Hangzhou 310027, China;

    Department of Chemistry, Zhejiang University, Hangzhou 310027, China;

    Science and Technology on Scramjet Laboratory, The 31st Research Institute of CASK, Beijing 10074, China;

    Science and Technology on Scramjet Laboratory, The 31st Research Institute of CASK, Beijing 10074, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Palladium nanoparticles; Decalin; Aviation kerosene; Nanofluid; Heat sink;

    机译:钯纳米粒子十氢化萘;航空煤油;纳米流体散热器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号