...
首页> 外文期刊>Fuel >Non-premixed fluidized bed combustion of C_1-C_4 n-alkanes
【24h】

Non-premixed fluidized bed combustion of C_1-C_4 n-alkanes

机译:C_1-C_4正构烷烃的非预混流化床燃烧

获取原文
获取原文并翻译 | 示例
           

摘要

The non-premixed combustion of C_1-C_4 n-alkanes with air was investigated inside a bubbling fluidized bed of inert sand particles at intermediate temperatures: 923 K ≤ T_B ≤ 1123 K. For ethane, propane and n-butane, combustion occurred mainly in the freeboard region at bed temperatures below T_1 = 923 K. On the other hand, complete conversion occurred within 0.2 m of the injector at: T_2 = 1073 K. For methane, the measured values of T_1 and T_2 were significantly higher at 1023 K and above 1123 K, respectively. The fluidized bed combustion was accurately modeled with first-order global kinetics and one PFR model to represent the main fluidized bed body. The measured global reaction rates for C_2-C_4 n-alkanes were characterized by a uniform Arrhenius expression, while the global reaction rate for methane was significantly slower. Reactions in the injector region either led to significant conversion in that zone or an autoignition delay inside the main fluidized bed body. The conversion in the injector region increased with rising fluidized bed temperature and decreased with increasing jet velocity. To account for the promoting and inhibiting effects, an analogy was made with the concept of induction time: the PFR length (b_i) of the injector region was correlated to the fluidized bed temperature and jet velocity using an Arrhenius expression. These results show that the conversion of C_2-C_4 n-alkanes can be estimated with one set of critical bed temperatures and modeled with one Arrhenius kinetics expression.
机译:在惰性温度为923 K≤T_B≤1123 K的惰性砂粒鼓泡流化床内,研究了C_1-C_4正构烷烃与空气的非预混燃烧。对于乙烷,丙烷和正丁烷,燃烧主要发生在床温低于T_1 = 923 K时的干舷区域。另一方面,在距进样器0.2 m处,T_2 = 1073 K时发生了完全转化。对于甲烷,T_1和T_2的测量值在1023 K时显着更高,分别高于1123K。流化床燃烧用一阶整体动力学和一个PFR模型精确建模,以代表主要的流化床体。测得的C_2-C_4正构烷烃总体反应速率以均匀的Arrhenius表达为特征,而甲烷的总体反应速率则明显较慢。喷射器区域中的反应或者导致该区域的明显转化,或者导致主流化床体内的自燃延迟。喷射器区域的转化率随着流化床温度的升高而增加,而随着射流速度的增加而降低。为了考虑促进和抑制作用,用诱导时间的概念进行类比:使用Arrhenius表达式将喷射器区域的PFR长度(b_i)与流化床温度和射流速度相关。这些结果表明,可以使用一组临界床温度估算C_2-C_4正构烷烃的转化率,并使用一个Arrhenius动力学表达式进行建模。

著录项

  • 来源
    《Fuel》 |2011年第9期|p.2850-2857|共8页
  • 作者单位

    Department of Chemical Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-ville, Montreal, Canada H3C 3A7;

    Department of Chemical Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-ville, Montreal, Canada H3C 3A7;

    Department of Chemical Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Station Centre-ville, Montreal, Canada H3C 3A7;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    combustion; methane; propane; ethane; n-butane;

    机译:燃烧;甲烷丙烷乙烷正丁烷;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号