...
首页> 外文期刊>Fuel >NO prediction in natural gas flames using GDF-Kin~R3.0 mechanism NCN and HCN contribution to prompt-NO formation
【24h】

NO prediction in natural gas flames using GDF-Kin~R3.0 mechanism NCN and HCN contribution to prompt-NO formation

机译:利用GDF-Kin〜R3.0机制预测天然气火焰中的NO,NCN和HCN对NO迅速形成的贡献

获取原文
获取原文并翻译 | 示例
           

摘要

The first objective of this work was to complete the previous version of our natural gas combustion mechanism (GDF-Kin~R2.0) with nitrogen chemistry in view of NO prediction in natural gas combustion. Two initiating main routes of Prompt NO have been evaluated separately: CH + N_2=NCN + H(GDF-Kin~R3.0_NCN) and CH + N_2=HCN + N (GDF-Kin~R3.0_NCN). In fact, recent literature tends to consider that the initiation of prompt no proceeds via NCN while current chemical mechanisms still attribute HCN and N as products of the reaction of CH with N_2. The two versions of mechanism have been validated by modeling our experimental results (CH and NO profiles obtained in various natural gas flames [1]) and the CH/NO database available in the literature. Both versions of the mechanism exhibit similar predictions for CH and NO and an overall good agreement with experiments was observed even under lean conditions where CH and NO were formed at low levels. The predictions of GRI3.0 mechanism are also reported. The reaction path analyses show that production of NO is controlled by Prompt-NO mechanism. The set of Thermal-NO, NNH and N_2O mechanisms contributes to less than 3 percent of the total NO measured in these flames. In GDF-Kin~R3.0_HCN model, the formation of NO is controlled by (i) the two reactions of the extended Zeldovich mechanism (N + OH=NO + OH and N + O_2=NO + O) converting the N atoms produced by the reaction CH + N_2=HCN + N, and by (ii) the oxidation of HCN. In GDF-Kin~R3.0_NCN model, NO is mainly formed by the oxidation of HCN itself issued from NCN and by NCN oxidation yielding directly NO. N atoms still play a significant role in the formation of NO due to the activation of the reaction NCN + H-> HCN + N which generates N atoms in this mechanism.
机译:这项工作的第一个目标是,鉴于天然气燃烧中的NO预测,使用氮气化学方法完成了我们天然气燃烧机理的前一版本(GDF-Kin〜R2.0)。已分别评估了提示NO的两个初始主要路线:CH + N_2 = NCN + H(GDF-Kin〜R3.0_NCN)和CH + N_2 = HCN + N(GDF-Kin〜R3.0_NCN)。实际上,最近的文献倾向于认为通过NCN不会立即引发反应,而当前的化学机理仍将HCN和N归因于CH与N_2反应的产物。通过模拟我们的实验结果(在各种天然气火焰中获得的CH和NO分布图[1])和文献中可用的CH / NO数据库,对这两种机制进行了验证。该机制的两个版本都显示出对CH和NO的相似预测,即使在CH和NO形成水平较低的稀薄条件下,也观察到与实验的总体良好一致性。还报道了GRI3.0机制的预测。反应路径分析表明,NO的生成受Prompt-NO机理控制。在这些火焰中,热-NO,NHN和N_2O机理的集合占总NO的比例不到3%。在GDF-Kin〜R3.0_HCN模型中,NO的形成受(i)扩展Zeldovich机理的两个反应(N + OH = NO + OH和N + O_2 = NO + O)转换,产生的N原子通过反应CH + N_2 = HCN + N,以及(ii)氧化HCN。在GDF-Kin〜R3.0_NCN模型中,NO主要是由NCN发出的HCN自身氧化而生成的,而NC​​N氧化直接生成NO。由于NCN + H-> HCN + N反应的激活,N原子仍在NO的形成中起重要作用,在该机理中会生成N原子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号