...
首页> 外文期刊>Fusion Engineering and Design >Multi-dimensional computational model of the movement of the solid-gas interface during the layering process in inertial confinement fusion targets in a non-uniform thermal environment
【24h】

Multi-dimensional computational model of the movement of the solid-gas interface during the layering process in inertial confinement fusion targets in a non-uniform thermal environment

机译:非均匀热环境下惯性约束聚变目标分层过程中固-气界面运动的多维计算模型

获取原文
获取原文并翻译 | 示例
           

摘要

The redistribution of deuterium (DD) or of a deuterium-tritium mixture (DT) to form a layer on the inside of spherical inertial confinement fusion (ICF) capsules is a challenging problem because of the symmetry requirements of the fuel layer thickness, the smoothness requirement of the inside target surface, and the time restriction on the production process. Heat- and mass-transfer processes have been identified to interact with one another to influence the outcome of the layering process. For example, the mass redistribution speed of the fuel inside the shell towards a uniform layer and the final layer thickness uniformity depend on the variation in local heat transfer coefficient along the outer target surface. The focus of this work was to develop a numerical tool to help understand the physics involved in the layering process to be able to assess the influence of key parameters on the transient layer formation. The coupled mass and heat transfer processes governing target layering have been studied numerically, implementing unique boundary conditions to track the movement of the gas-solid boundary on the inside of the shell. The model was validated through comparison with theoretical results and laboratory-scale experiments. With this model, a window of parameters can by identified, under which layering experiments are likely to be successful.
机译:由于燃料层厚度,光滑度的对称性要求,氘(DD)或氘-mixture混合物(DT)的重新分布以在球形惯性约束聚变(ICF)胶囊内部形成一层是一个具有挑战性的问题内靶表面的要求以及生产过程的时间限制。已经确定传热和传质过程相互影响,以影响分层过程的结果。例如,壳内部的燃料朝着均匀层的质量重新分布速度和最终层厚度均匀性取决于沿着外部目标表面的局部传热系数的变化。这项工作的重点是开发一种数值工具,以帮助理解分层过程中涉及的物理过程,从而能够评估关键参数对过渡层形成的影响。对控制目标分层的传质过程和传热过程进行了数值研究,实现了独特的边界条件以跟踪壳内部气固边界的运动。通过与理论结果和实验室规模的实验进行比较来验证该模型。使用该模型,可以确定参数窗口,在该窗口下分层实验很可能会成功。

著录项

  • 来源
    《Fusion Engineering and Design》 |2011年第1期|p.51-65|共15页
  • 作者

    K.-J. Boehm; A.R. Raffray;

  • 作者单位

    Center for Energy Research. M/C 0438 460D EBU II, University of California. San Diego, CA 92093-0438, United States;

    Center for Energy Research. M/C 0438 460D EBU II, University of California. San Diego, CA 92093-0438, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    target layering; numerical model; heat- and mass-transfer;

    机译:目标分层;数值模型传热传质;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号