...
首页> 外文期刊>Fusion Science and Technology >Neutronic Study of an Innovative Thorium-Uranium-Based Fusion-Fission Hybrid Energy Reactor with ~(233)U Breeding Enhancement by Using Dual-Coolant System
【24h】

Neutronic Study of an Innovative Thorium-Uranium-Based Fusion-Fission Hybrid Energy Reactor with ~(233)U Breeding Enhancement by Using Dual-Coolant System

机译:用双冷却液系统研究〜(233)U增殖的创新型Fusion铀铀基裂变混合能源反应堆的中子研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this technical note, an innovative thorium-uranium-fueled fusion-fission hybrid reactor (FFHR) design that employs a dual-coolant system to enhance U-233 breeding and is based on a three-dimensional engineering model is presented. The reactor consists of two kinds of modules: a water-cooled, thermal spectrum power generation natural uranium-fueled module and helium-cooled, fast spectrum fissile-breeding natural thorium-fueled modules, which are arranged alternately in the poloidal direction of the blanket. An interesting and important neutronic characteristic of the FFHR is found in this technical note: Energy multiplication is primarily determined by the uranium module parameters and is almost independent of the thorium module parameter. Uranium module design should first consider improving energy production. The Th-232 neutron capture rate is primarily determined by the thorium module parameters. The uranium module parameter has almost no influence on the Th-232 neutron capture rate in the thorium module. The uranium and thorium modules have weak coupling in neutronic behavior. However, with the fixed design parameters of the uranium and thorium modules, the most important influencing factor on energy multiplication factor M (the ratio of total blanket energy output and the fusion energy) and the U-233 breeding rate is the fraction of the external fusion neutron source irradiated on the uranium or thorium module or the blanket coverage rate of the uranium or thorium modules. Based on this characteristic, an innovative hybrid reactor design that employs a dual-coolant system is proposed in this technical note. Uranium modules still use water as the coolant to maintain a high energy multiplication factor, whereas helium is used as the coolant for the thorium module to obtain a fast neutron spectrum to enhance the U-233 breeding. The simulation results show that the helium-cooled thorium module is 2.5 times more efficient in U-233 breeding compared to the original water-cooled thorium module design. Approximately 10 tons of U-233 is produced after 20 years of operation for the helium-cooled thorium module design.
机译:在此技术说明中,提出了一种创新的th铀燃料聚变裂变混合反应堆(FFHR)设计,该设计采用双冷却剂系统来增强U-233繁殖,并基于三维工程模型。该反应堆由两种模块组成:水冷式,热谱发电天然铀燃料模块和氦冷式,快谱易裂变繁殖天然or燃料模块,它们在毯子的极向方向上交替排列。 FFHR的有趣且重要的中子学特征在此技术说明中找到:能量倍增主要由铀模块参数决定,并且几乎与the模块参数无关。铀模块设计应首先考虑改善能源生产。 Th-232中子的捕获率主要由the模块参数决定。铀模块参数几乎对on模块中Th-232中子的捕获率没有影响。铀和th模块的中子学行为耦合较弱。但是,在铀和or组件的设计参数固定的情况下,影响能量倍增因子M(总毯式能量总输出与聚变能量的比)和U-233繁殖率的最重要影响因素是外部能量的分数。铀或or组件上照射的聚变中子源或铀或th组件的覆盖率。基于此特性,在本技术说明中提出了采用双冷却剂系统的创新混合反应堆设计。铀组件仍使用水作为冷却剂来维持高能量倍增系数,而氦气用作for组件的冷却剂以获得快速的中子能谱以增强U-233的繁殖。仿真结果表明,与原始水冷-组件设计相比,氦冷-组件在U-233育种中的效率高2.5倍。经过20年的运行,氦冷却的module模块设计生产了约10吨U-233。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号