...
首页> 外文期刊>Geophysics >Pressure and fluid saturation prediction in a multicomponent reservoir using combined seismic and electromagnetic imaging
【24h】

Pressure and fluid saturation prediction in a multicomponent reservoir using combined seismic and electromagnetic imaging

机译:地震和电磁成像相结合的多组分储层压力和流体饱和度预测

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a method for combining seismic and electromagnetic (EM) measurements to predict changes in water saturation, pressure, and CO_2 gas/oil ratio in a reservoir undergoing CO_2 flood. Crosswell seismic and EM data sets taken before and during CO_2 flooding of an oil reservoir are inverted to produce crosswell images of the change in compressional velocity, shear velocity, and electrical conductivity during a CO_2 injection pilot study. A rock-properties model is developed using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic velocity, and electrical conductivity. The parameters of the rock-properties model are found by an L_1-norm simplex minimization of predicted and observed differences in compressional velocity and density. A separate minimization, using Archie's law, provides parameters for modeling the relations between water saturation, porosity, and electrical conductivity. The rock-properties model is used to generate re- lationships between changes in geophysical parameters and changes in reservoir parameters. Electrical conductivity changes are directly mapped to changes in water saturation; estimated changes in water saturation are used along with the observed changes in shear-wave velocity to predict changes in reservoir pressure. The estimation of the spatial extent and amount of CO_2 relies on first removing the effects of the water saturation and pressure changes from the observed compressional velocity changes, producing a residual compressional velocity change. This velocity change is then interpreted in terms of increases in the CO_2/oil ratio. Resulting images of the CO_2/oil ratio show CO_2-rich zones that are well correlated to the location of injection perforations, with the size of these zones also correlating to the amount of injected CO_2. The images produced by this process are better correlated to the location and amount of injected CO_2 than are any of the individual images of change in geophysical parameters.
机译:本文提出了一种结合地震和电磁(EM)测量值来预测经历CO_2洪水的油藏中水饱和度,压力和CO_2气油比变化的方法。反转油藏在CO_2驱油之前和期间采集的Crosswell地震和EM数据集,以生成在CO_2注入试点研究期间压缩速度,剪切速度和电导率变化的Crosswell图像。使用测得的测井孔隙度,流体饱和度,压力,温度,堆积密度,声速和电导率来开发岩石特性模型。通过对压缩速度和密度的预测差异和观察差异进行L_1范数最小化,可以找到岩石特性模型的参数。使用阿奇定律的另一个最小化提供了用于模拟水饱和度,孔隙率和电导率之间的关系的参数。岩石特性模型用于生成地球物理参数变化与储层参数变化之间的关系。电导率的变化直接映射到水饱和度的变化。估计的水饱和度变化与观察到的剪切波速度变化一起用于预测储层压力的变化。 CO 2的空间范围和量的估计依赖于首先从观察到的压缩速度变化中除去水饱和度和压力变化的影响,从而产生残余的压缩速度变化。然后根据CO_2 /油比的增加来解释这种速度变化。所得的CO_2 /油比图像显示富含CO_2的区域与注入射孔的位置密切相关,这些区域的大小也与注入的CO_2量相关。与地球物理参数变化的任何单个图像相比,通过此过程生成的图像与注入的CO_2的位置和数量之间的相关性更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号