首页> 外文期刊>Granular matter >Lattice element method for simulations of failure in bio-cemented sands
【24h】

Lattice element method for simulations of failure in bio-cemented sands

机译:模拟生物水泥砂土破坏的格网单元法

获取原文
获取原文并翻译 | 示例
           

摘要

Microbiologically induced calcite precipitation following the ureases is a bio-geo-chemical soil improvement technique in which the microorganism facilitates to create an environment for the precipitation of carbonates among the grains. It results in binding the loose granular media and prevention against mechanical failure. Although, the bio-cemented processes and media have been studied in the past in qualitative sense with experimental programs, the mathematical and numerical modelling techniques to quantify the strength parameters are rare. In this article, we propose the lattice element methodology which we applied to perform numerical computations of unconfined compression tests on bio-cemented sands. We also provide the experimental results of the unconfined compression tests on bio-cemented sands treated with a different number of cycles that we conducted in our laboratory. The experimental procedure is explained in details. The ultimate goal is to study the macroscopic response and also to quantify the process for engineering applications. The developed model with an embedded discontinuity can capture the macroscopic behaviour from meso-scale element failure, where the diagonal shear cracks which are seldom inherent to compression failure of highly cemented granular media lead the specimens to final failure. The model can capture the complex interaction of the cracks such as initiation and propagation, branching, coalescence and fingering at a nominal computation cost. The numerical and experimental results show good agreement to a large extent. The developed model is suitable to study brittle, and quasi-brittle behaviour of highly cemented granular media.
机译:脲酶后微生物诱导的方解石沉淀是一种生物地球化学土壤改良技术,其中微生物有助于为谷物中的碳酸盐沉淀创造环境。这样可以粘合松散的颗粒状介质并防止机械故障。尽管过去已经通过实验程序对生物胶结工艺和介质进行了定性研究,但用于量化强度参数的数学和数值建模技术却很少。在本文中,我们提出了格状单元方法,该方法可用于对生物水泥砂进行无边压缩试验的数值计算。我们还提供了在我们实验室进行的不同循环次数下对生物水泥砂进行无边压缩测试的实验结果。实验过程进行了详细说明。最终目标是研究宏观响应并量化工程应用的过程。具有嵌入式不连续性的已开发模型可以捕获中尺度元素破坏的宏观行为,在该行为中,高度胶结的颗粒介质的压缩破坏所固有的对角剪切裂纹很少导致标本最终破坏。该模型可以以名义计算成本捕获裂纹的复杂相互作用,例如引发和扩展,分支,聚结和指状。数值和实验结果在很大程度上显示出良好的一致性。开发的模型适用于研究高胶结颗粒介质的脆性和准脆性行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号