首页> 外文期刊>Granular matter >Two-dimensional discrete element simulation of the mechanical behavior and strain localization of anisotropic dense sands
【24h】

Two-dimensional discrete element simulation of the mechanical behavior and strain localization of anisotropic dense sands

机译:各向异性致密砂土力学行为和应变局部化的二维离散元模拟

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a microscopic investigation on the effects of initial anisotropy, drainage condition, and consolidation state on the mechanical behavior and strain localization of dense sands. Discrete element simulations with non-spherical clumps were carried out to simulate drained and undrained biaxial tests of isotropically and K-0 consolidated anisotropic sands. In drained tests, the stress-strain relationship shows an initial hardening and subsequent softening behavior, and the peak shear stress decreases as the bedding plane angle increases. K-0 consolidation has slight influence on the peak friction angle and does not affect the friction angle at zero dilatancy. In undrained tests, softening behavior occurs when the bedding plane angle is small, while for higher bedding plane angle, the strengthening response takes over. As the bedding plane angle increases, the peak friction angle decreases initially but increases afterwards. The relative displacement and rotation angle of clumps as well as the void ratio distribution within the specimen indicate the appearance of shear band. Shear bands leads to the inhomogeneous deformation field within specimens. Excessive dilation inside of shear band is produced, and it may induce re-contraction behavior under drained condition and may re-increase the pore water pressure under undrained condition. The appearance of shear band reduces the peak shear strength, and the specimen with a low bedding angle results in a larger reduction of shear strength than that from the specimen with a high bedding angle. Particle rotation mode and force chain network change along with the formation of a shear band. As the longest axis of clumped particle varies from vertical to parallel with respect to the loading direction, the majority of particle contacts inside of shear band changes from multi-point mode to single contact mode. The obtained shear band width and inclination angle were computed, and their variations with bedding angle were obtained.
机译:本文对初始各向异性,排水条件和固结状态对致密砂土的力学行为和应变局部化的影响进行了微观研究。用非球形团块进行离散元模拟,以模拟各向同性和K-0固结各向异性砂的排水和不排水双轴试验。在排水试验中,应力-应变关系显示出最初的硬化和随后的软化行为,并且峰值剪切应力随着垫层平面角的增加而减小。 K-0固结对峰值摩擦角影响很小,并且在零膨胀率下不影响摩擦角。在不排水的试验中,当层理平面角较小时会发生软化行为,而对于层间平整度较高的角度,则将承担加固响应。随着垫层平面角的增加,峰值摩擦角开始时减小,但随后增大。团块的相对位移和旋转角以及试样中的空隙率分布表明剪切带的出现。剪切带导致样本内的不均匀变形场。剪切带内部过度膨胀,在排水条件下可能引起再收缩行为,在不排水条件下又可能增加孔隙水压力。剪切带的出现降低了峰值剪切强度,而低层理角度的样品比高层理角度的样品的剪切强度降低更大。粒子旋转模式和力链网络随着剪切带的形成而变化。由于成簇颗粒的最长轴相对于加载方向从垂直到平行变化,剪切带内部的大多数颗粒接触从多点模式更改为单接触模式。计算获得的剪切带宽度和倾斜角,并获得它们随层理角的变化。

著录项

  • 来源
    《Granular matter》 |2019年第2期|37.1-37.16|共16页
  • 作者单位

    Tongji Univ, Dept Geotech Engn, Shanghai 200092, Peoples R China|Tongji Univ, Key Lab Geotech & Underground Engn, Minist Educ, Shanghai 200092, Peoples R China;

    Tongji Univ, Dept Geotech Engn, Shanghai 200092, Peoples R China;

    CALTECH, Dept Mech & Civil Engn, Pasadena, CA 91125 USA;

    Tongji Univ, Dept Geotech Engn, Shanghai 200092, Peoples R China|Tongji Univ, Key Lab Geotech & Underground Engn, Minist Educ, Shanghai 200092, Peoples R China;

    Tongji Univ, Dept Geotech Engn, Shanghai 200092, Peoples R China|Tongji Univ, Key Lab Geotech & Underground Engn, Minist Educ, Shanghai 200092, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Shear band; Dense sand; Anisotropy; Discrete element simulation; Undrained shear;

    机译:剪切带致密砂各向异性离散元模拟不排水剪;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号