...
首页> 外文期刊>Ground water >Effects of Density and Viscosity in Modeling Heat as a Groundwater Tracer
【24h】

Effects of Density and Viscosity in Modeling Heat as a Groundwater Tracer

机译:密度和粘度对模拟地下水作为示踪剂的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Decoupled simulation of groundwater flow and heat transport assuming constant fluid density and viscosity is computationally efficient and simple. However, by neglecting the effects of variable density and viscosity, numerical solution of heat transport may be inaccurate. This study investigates the conditions under which the density and viscosity effects on heat transport modeling can be neglected without any significant loss of computational accuracy. A cross-section model of aquifer-river interactions at the Hanford 300 Area in Washington State was employed as the reference frame to quantify the role of fluid density and viscosity in heat transport modeling. This was achieved by comparing the differences in simulated temperature distributions with and without considering variable density and viscosity, respectively. The differences between the two sets of simulations were found to be minor under the complex field conditions at the Hanford 300A site. Based on the same model setup but under different prescribed temperature gradients across the simulation domain, a series of heat transport scenarios were further examined. When the maximum temperature difference across the simulation domain is within 15℃., the mean discrepancy between the simulated temperature distributions with and without considering the effects of variable density and viscosity is approximately 2.5% with a correlation coefficient of above 0.8. Meanwhile, the speedup in runtime is roughly 225% when the maximum temperature difference is at 15℃. This work provides some quantitative guidelines for when heat transport may be simulated by assuming constant density and viscosity as a reasonable compromise between accuracy and efficiency.
机译:假设流体密度和黏度恒定,则对地下水流动和传热的解耦模拟计算效率高且简单。但是,通过忽略可变密度和粘度的影响,传热的数值解可能是不准确的。这项研究调查了可以忽略密度和粘度对热传递模型的影响而又不显着降低计算精度的条件。以华盛顿州汉福德300区的含水层-河流相互作用的横截面模型为参考框架,以量化流体密度和粘度在热传输模型中的作用。通过比较模拟温度分布的差异(分别考虑和不考虑可变密度和粘度)来实现。在汉福德300A站点的复杂现场条件下,发现两组模拟之间的差异很小。基于相同的模型设置,但是在整个模拟域中,在不同的规定温度梯度下,进一步研究了一系列热传输情况。当整个模拟域的最大温差在15℃以内时,在不考虑可变密度和粘度影响的情况下,模拟温度分布之间的平均差异约为2.5%,相关系数大于0.8。同时,当最大温差为15℃时,运行时的加速大约为225%。这项工作提供了一些定量准则,用于通过假设恒定的密度和粘度作为准确性和效率之间的合理折衷来模拟何时可以模拟传热。

著录项

  • 来源
    《Ground water》 |2010年第3期|p.380-389|共10页
  • 作者

    Rui Ma; Chunmiao Zheng;

  • 作者单位

    Department of Geological Sciences, University of Alabama, Tuscaloosa, AL MOE Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China;

    rnDepartment of Geological Sciences, University of Alabama, Tuscaloosa, AL;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号