...
首页> 外文期刊>Heat Transfer Engineering >Nucleate Pool Boiling Heat Transfer of Hydro-Fluorocarbon Refrigerant R134a on TiO_2 Nanoparticle Coated Copper Heating Surfaces
【24h】

Nucleate Pool Boiling Heat Transfer of Hydro-Fluorocarbon Refrigerant R134a on TiO_2 Nanoparticle Coated Copper Heating Surfaces

机译:氢氟碳制冷剂R134a在TiO_2纳米颗粒包覆的铜加热面上的核池沸腾传热

获取原文
获取原文并翻译 | 示例
           

摘要

Pool boiling heat transfer performance of hydro-fluorocarbon refrigerant R-134a on titanium dioxide (TiO2) nanoparticle coated surface is experimentally studied in the article. The test surfaces, viz, 100 nm, 200 nm and 300 nm thick TiO2 nanoparticle coated surfaces over 100 nm thin film surface are used in this experimentation. The surfaces are synthesized and fabricated by simple and cost-effective electron beam evaporation method. The test surfaces were characterized by scanning electron microscope and atomic force microscope to uncover the formation of crystalline structure on coated surfaces. These surfaces are utilized in pool boiling test rig using refrigerant R134a at 10 degrees C saturation temperatures. The result indicated that a maximum of 87.5% augmentation in the boiling heat transfer has been achieved by higher thickness of TiO2 coated surface than the bare copper surface. In addition, the incipience wall superheat is reduced for higher thickness coated surface. The augmentation of heat transfer coefficient might be the reason for increase in microano-porosity, active nucleation site density and surface area of the heating surface. It is observed that with the increase of sub-cooling temperature of liquid, the bubble departure diameter was reduced while the heat transfer coefficient has been increased.
机译:本文通过实验研究了碳氢化合物制冷剂R-134a在二氧化钛(TiO2)纳米涂层表面上的池沸腾传热性能。在该实验中使用测试表面,即在100 nm薄膜表面上的100 nm,200 nm和300 nm厚的TiO2纳米颗粒涂覆的表面。这些表面是通过简单且具有成本效益的电子束蒸发方法合成和制造的。通过扫描电子显微镜和原子力显微镜表征测试表面,以揭示涂层表面上晶体结构的形成。这些表面在池沸腾试验设备中使用,制冷剂为R134a,饱和温度为10摄氏度。结果表明,与裸铜表面相比,TiO2涂层表面的厚度更大,沸腾传热最多可增加87.5%。另外,对于更高厚度的涂层表面,减少了初始壁过热。传热系数的增加可能是微/纳米孔隙度,活性成核位点密度和受热面表面积增加的原因。观察到,随着液体的过冷温度的升高,气泡离开直径减小,而传热系数增加。

著录项

  • 来源
    《Heat Transfer Engineering》 |2019年第12期|997-1006|共10页
  • 作者

    Ray Mukul; Bhaumik Swapan;

  • 作者单位

    Natl Inst Technol Agartala, Dept Mech Engn, Agartala, Tripura, India;

    Natl Inst Technol Agartala, Dept Mech Engn, Agartala, Tripura, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号